4.7 Article

Quercetin-rGO based mercury-free electrode for the determination of toxic Cd (II) and Pb (II) ions using DPASV technique

Journal

ENVIRONMENTAL RESEARCH
Volume 202, Issue -, Pages -

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.envres.2021.111707

Keywords

Quercetin; Reduced graphene oxide; Chemically modified electrode; Metal ions; Stripping voltammetry

Ask authors/readers for more resources

The study focused on the development of a mercury-free electrode based on green chemistry synthesis of reduced graphene oxide (Q-rGO) for simultaneous detection of Pb (II) and Cd (II) ions.
Metal ion pollution poses serious threat to environment. Analysis of Cd (II) and Pb (II) ions using chemically modified mercury free electrode is a feasible routine analytical tool. Developing an electrode surface modified with conductive 2D carbon and metal complexing ligand created a synergetic effect towards sensitive and selective electrochemical determination of metal ions. The present study focused on green chemistry approach towards synthesis of reduced graphene oxide using a natural flavonoid (Quercetin) that acts as a reducing, functionalizing agent and also as metal complexing agent. This quercetin reduced graphene oxide (Q-rGO) was surface modified over paraffin wax impregnated graphite electrode. The resulting Q-rGO electrode was used as a mercury-free electrode for simultaneous analysis of Pb (II) and Cd (II) ions. Physico-chemical parameters of the synthesized Q-rGO and modified electrodes were characterized using X-ray diffraction, UV-Vis, FT-IR, and Raman spectrometer. The morphology of the material and surface topography of the modified electrode was observed using HR-TEM and FESEM, respectively. Cyclic voltammetry (CV) and AC impedance (EIS) were adopted for electrochemical characterization and Differential pulse anodic stripping voltammetry (DPASV) was chosen for simultaneous sensing of metal ions using Q-rGO electrode. Analytical parameters such as effect of electrolyte, effect of pH, preconcentration time and deposition potential were optimized. The experimental results suggested that the Q-rGO electrode is capable of sensing Pb (II) and Cd (II) ions individually and simultaneously. Inference from the calibration plot showed that the Q-rGO electrode was capable of sensing the concentration range of Cd (II) ion form 0.19 to 2.5 mu gL(-1) with LOD-0.05 mu gL(-1) and Pb (II) ions from 0.19 to 3.1 mu gL(-1) with LOD 0.06 mu gL(-1).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available