4.7 Article

Patterns of microbial arsenic detoxification genes in low-arsenic continental paddy soils

Journal

ENVIRONMENTAL RESEARCH
Volume 201, Issue -, Pages -

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.envres.2021.111584

Keywords

As(III) oxidation; Arsenic methylation; Gene abundance; Climatic factors; Paddy soils

Funding

  1. National Natural Science Foundation of China [41877060,42007027]
  2. Youth Innovation Promotion Association of Chinese Academy of Sciences [2016284]
  3. Scholar Program of the Jiangsu Province [BRA2019333]
  4. Top-Notch Young Talents Program of China [W03070089]

Ask authors/readers for more resources

The diversity and abundance of arsenic detoxification genes in paddy soils varied significantly across different climatic zones in China, mainly influenced by factors such as soil pH, average annual temperature, and arsenic contents. These functional genes were mainly carried by bacteria, archaea, and eukaryotes.
Microbes mediate the arsenic detoxification in paddy soils, determining the fate of arsenic in soils and its availability to rice plants, yet little is known about the structures and abundances of functional genes as well as the driving forces in low-arsenic paddy fields. To depict the arsenic detoxification functional gene patterns, 429 soil samples were collected from 39 paddy fields across four climatic zones in China, with the arsenic contents ranged from 9.76 to 19.74 mg kg(-1). GeoChip, a microarray-based metagenomic technique, was used to analyze the functional genes involved in arsenic detoxification. A total of three arsenic detoxification gene families were detected, aoxB, arxA (arsenite oxidase), and arsM (methyltransferase). Both the diversity and abundance of functional genes varied significantly among sampling sites (p < 0.05) and decreased along the arsenic gradient. Arsenic detoxification genes were carried by bacteria, archaea, and eukaryotes. Redundancy analysis showed that soil samples were grouped according to both climatic zones they located in and arsenic gradients at the continental scale. Soil pH, average annual temperature (AAT), arsenic, annual average precipitation (AAP), and CEC were the most important factors in shaping the functional structure. Structural equation modeling showed that AAT (r = 0.21), pH (r = -0.20), and arsenic contents (r = -0.11) directly affected the arsenic detoxification gene abundances. These findings provide an overall picture of microbial communities involved in arsenic detoxification in paddy soils and reveal the importance of climatic factors in shaping functional genes across a large spatial scale.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available