4.7 Article

Hybrid capacitive deionization of NaCl and toxic heavy metal ions using faradic electrodes of silver nanospheres decorated pomegranate peel-derived activated carbon

Journal

ENVIRONMENTAL RESEARCH
Volume 197, Issue -, Pages -

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.envres.2021.111110

Keywords

Capacitive deionization; Faradic electrode; Salt removal; Heavy metal ions removal; Long-term performance; Wastewater treatment

Funding

  1. Khalifa University of Science and Technology, Abu Dhabi [CIRA201827]

Ask authors/readers for more resources

The study focuses on incorporating silver nanospheres into pomegranate peel-derived activated carbon for capacitive deionization (CDI), showing improved adsorption capacity for salt and toxic ions. The asymmetric CDI-electrodes developed have great potential for removing salt and toxic contaminants from industrial wastewater.
Capacitive deionization (CDI) is an evolving technology for eradicating salt and toxic heavy metal ions from brackish wastewater. However, traditional CDI electrodes have lower salt adsorption capacity and inadequate adsorption of selective metal ions for long-term operations. Herein, Ag nanospheres incorporated pomegranate peel-derived activated carbon (Ag/P-AC) was prepared and implied to the CDI process for removing NaCl, toxic mono-, di-, and trivalent metal ions. Morphological analysis revealed that the 80-100 nm-sized Ag nanospheres were uniformly decorated on the surfaces of P-AC nanosheets. The Ag/P-AC has a higher specific surface area (640 m2 g-1), superior specific capacitance (180 F g-1 at 50 mV s- 1) and a lower charge transfer resistance (0.5 omega cm2). CDI device was fabricated by Ag/P-AC as an anode, which adsorbed anions and P-AC as cathode for adsorption of positively charged ions at 1.2 V in an initial salt concentration of 1000 mg L-1. An asymmetric Ag/ P-AC//P-AC exhibited a maximum NaCl adsorption capacity of 36 mg g-1 than symmetric P-AC//P-AC electrodes (22.7 mg g-1). Furthermore, Pb(II), Cd(II), F-, and As(III) ions were successfully removed from simulated wastewater by using Ag/P-AC//P-AC based CDI system. These asymmetric CDI-electrodes have an excellent prospect for the removal of salt and toxic contaminants in industrial wastewater.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available