4.7 Article

Hydrothermal carbonization of biowaste as an alternative treatment path to current waste management practices in Germany

Journal

ENERGY CONVERSION AND MANAGEMENT
Volume 244, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.enconman.2021.114433

Keywords

Anaerobic digestion; Hydrothermal carbonization; Energetic assessment; Cascaded waste treatment; Global warming potential; Dynamic modeling

Funding

  1. European Commission
  2. European Regional Development Fund (ERDF) under the slogan Investing in our future

Ask authors/readers for more resources

This study investigated nine alternative or additional treatment options from anaerobic digestion to composting, finding that the incorporation of hydrothermal carbonization can significantly increase energy utilization efficiency and reduce greenhouse gas emissions.
Instead of an exclusive composting of the organic fraction of municipal solid waste (OFMSW), anaerobic digestion (AD) has emerged as a widely used upstream process in Germany to additionally harvest energy from this waste stream. However, the energy potential is not fully exploited as only easily biodegradable material undergoes AD. Additionally, a high potential of CH4 and N2O emissions during the composting and spreading of compost may result in an overall high global warming potential (GWP) from these treatment paths. In this study, nine alternative or additional treatment options to AD followed by composting were investigated. For all treatment paths, the hydrothermal carbonization (HTC) reflected a central component and was connected to a downstream energy exploitation step by means of gasification or co-combustion. All treatment paths were dynamically modeled with regards to their energetic performance and evaluated against their exergetic efficiency. The datasets on energy consumption and production formed the basis for determining the global warming potential (GWP) according to a life cycle assessment approach. The functional unit was the production and export of exergy. The assessment showed that the incorporation of an HTC step was able to increase the net exergy exploitation by up to 93% in comparison to a treatment path consisting of AD and composting. Simultaneously, the GWP was reduced by 30%. Here, preferential treatment paths combined AD with HTC.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available