4.5 Article

Sound Localization for Ad-Hoc Microphone Arrays

Journal

ENERGIES
Volume 14, Issue 12, Pages -

Publisher

MDPI
DOI: 10.3390/en14123446

Keywords

sound localization; DOA; 3D space; microphone array

Categories

Ask authors/readers for more resources

Sound localization is a field in signal processing that involves identifying the origin of a sound signal, which has applications in speech enhancement, communication, radars, and medicine. A novel sound localization method has been developed that uses fewer microphones to reduce algorithm complexity, yet provides results comparable to more complex methods.
Sound localization is a field of signal processing that deals with identifying the origin of a detected sound signal. This involves determining the direction and distance of the source of the sound. Some useful applications of this phenomenon exists in speech enhancement, communication, radars and in the medical field as well. The experimental arrangement requires the use of microphone arrays which record the sound signal. Some methods involve using ad-hoc arrays of microphones because of their demonstrated advantages over other arrays. In this research project, the existing sound localization methods have been explored to analyze the advantages and disadvantages of each method. A novel sound localization routine has been formulated which uses both the direction of arrival (DOA) of the sound signal along with the location estimation in three-dimensional space to precisely locate a sound source. The experimental arrangement consists of four microphones and a single sound source. Previously, sound source has been localized using six or more microphones. The precision of sound localization has been demonstrated to increase with the use of more microphones. In this research, however, we minimized the use of microphones to reduce the complexity of the algorithm and the computation time as well. The method results in novelty in the field of sound source localization by using less resources and providing results that are at par with the more complex methods requiring more microphones and additional tools to locate the sound source. The average accuracy of the system is found to be 96.77% with an error factor of 3.8%.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available