4.5 Article

Heat Transfer Performance Potential with a High-Temperature Phase Change Dispersion

Journal

ENERGIES
Volume 14, Issue 16, Pages -

Publisher

MDPI
DOI: 10.3390/en14164899

Keywords

phase change slurry; convective heat transfer; Nusselt number; phase change; temperature control

Categories

Funding

  1. Cooling of converters by using phase change materials project of the State Grid Corporation of China
  2. Global Energy Interconnection Research Institute Europe GmbH [SGRIWLZXQT[2017]882]

Ask authors/readers for more resources

Phase change dispersions are useful for isothermal cooling applications, providing greater storage capacities and heat transfer efficiency. Understanding the convective heat transfer coefficients of phase change dispersions is crucial for optimizing operating conditions.
Phase change dispersions are useful for isothermal cooling applications. As a result of the phase changes that occur in PCDs, they are expected to have greater storage capacities than those of single-phase heat transfer fluids. However, for appropriate heat exchanger dimensions and geometries for use in phase change dispersions, knowledge about the convective heat transfer coefficients of phase change dispersions is necessary. A test unit for measuring the local heat transfer coefficients and Nusselt numbers of PCDs was created. The boundary condition of constant heat flux was chosen for testing, and the experimental heat transfer coefficients and Nusselt numbers for the investigated phase change dispersion were established. Different experimental parameters, such as the electrical wall heat input, Reynolds number, and mass flow rate, were varied during testing, and the results were compared to those of water tests. It was found that, due to the tendency of low-temperature increases in phase change dispersions, the driving temperature difference is greater than that of water. In addition, larger heat storage capacities were obtained for phase change dispersions than for water. Through this experimentation, it was acknowledged that future investigation into the optimised operating conditions must be performed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available