4.6 Article

Tailoring of cobalt phosphide anchored nitrogen and sulfur co-doped three dimensional graphene hybrid: Boosted electrocatalytic performance towards hydrogen evolution reaction

Journal

ELECTROCHIMICA ACTA
Volume 380, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.electacta.2021.138262

Keywords

Cobalt phosphide; Electrocatalysts; Hydrogen evolution reaction; Non-precious metal; Three-dimensional graphene

Ask authors/readers for more resources

In this study, a high-performance and low-cost CoP@N,S-3D-GN electrocatalyst with excellent stability was successfully synthesized via a simple two-step production pathway. The CoP@N,S-3D-GN exhibited boosted electrocatalytic activity towards HER with a low overpotential, high exchange current density, and maintained its performance after prolonged testing.
The tailoring of a high-performance, low-cost hybrid electrocatalysts with excellent stability in acidic media for hydrogen evolution reaction (HER) has gain paramount importance. Herein, the cobalt phosphide decorated nitrogen and sulfur co-doped three dimensional graphene (CoP@N,S-3D-GN) electrocatalyst was synthesized via a simple two step production pathway including hydrothermal self-assembly and low-temperature phosphidation. Compared both with CoP-anchored 3D-GN (CoP@3D-GN) and N,S-co-doped 3D-GN (N,S-3D-GN) samples, profiting from the synergistic merits of co-doping and metal phosphide, CoP@N,S-3D-GN delivers boosted electrocatalytic activity towards HER with an overpotential of only 118 mV at 10 mA.cm(-2), a Tafel slope of 50 mV.dec(-1) and an exchange current density of 2.2 x 10(-2) mA.cm(-2). Furthermore, it preserves its electrocatalytic activity for both after 1000 cyclic voltammetry cycles at 100 mV.s(-1) potential scan rate and at least 50 h under 120 mV overpotential. This work provides rational route for engineering of metal phosphides anchored 3D-graphene hybrid electrocatalysts to boost the HER catalytic performance. (C) 2021 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available