4.7 Article

Multistage electrodialysis for desalination of natural seawater

Journal

DESALINATION
Volume 505, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.desal.2021.114973

Keywords

Electrodialysis; Multistage; Multivalent ions; Energy consumption; Natural seawater

Funding

  1. European Union's Horizon 2020 Research and Innovation program [685579]

Ask authors/readers for more resources

Electrodialysis (ED) is a promising technology for seawater desalination, but the impact of multivalent ions on membrane scaling and resistance has been overlooked. This study investigated the influence of multivalent ions in seawater on the desalination performance of multistage ED, finding that CEMs with preferential removal of multivalent ions were more effective in removing magnesium ions and achieving lower energy consumption and stable system performance.
Electrodialysis (ED) is receiving increasing attention as promising technology for seawater desalination. However, most of the ED investigations are typically performed using artificial NaCl solutions, while the effect of multivalent ions (such as Mg2+ and Ca2+) on membrane scaling and resistance has been so far overlooked. In this work, we investigate the influence of multivalent ions in seawater on the desalination performance of multistage ED. In particular, natural seawater was used as feed solution, and two different strategies were compared, i.e. by using conventional cation exchange membranes (CEMs), as well as CEMs with preferential removal of multivalent ions. For both CEMs, we found that the removal of calcium and magnesium was higher compared to that of sodium and no effect due to operation at low current density was observed. More magnesium was removed with the multivalent ion permeable CEM. Starting from similar to 27 g/l (i.e. inlet concentration of the natural seawater source), the upscaled multistage ED system produced a continuous diluate concentration of 1.9 g/l. The system performance was stable over 18 days, with an average energy consumption of 3 kWh/m(3), demonstrating the potential of multistage ED seawater desalination.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available