4.4 Article

Bio-based polyurethane prepared from Kraft lignin and modified castor oil

Journal

EXPRESS POLYMER LETTERS
Volume 10, Issue 11, Pages 927-940

Publisher

BUDAPEST UNIV TECHNOL & ECON
DOI: 10.3144/expresspolymlett.2016.86

Keywords

mechanical properties; reinforcements; Kraft lignin; lignopolyurethane materials; modified castor oil

Funding

  1. FAPESP/CNPq
  2. UFABC (Federal University of ABC)

Ask authors/readers for more resources

Current challenges highlight the need for polymer research using renewable natural sources as a substitute for petroleum-based polymers. The use of polyols obtained from renewable sources combined with the reuse of industrial residues such as lignin is an important agent in this process. Different compositions of polyurethane-type materials were prepared by combining technical Kraft lignin (TKL) with castor oil (CO) or modified castor oil (MCO1 and MCO2) to increase their reactivity towards diphenylmethane diisocyanate (MDI). The results indicate that lignin increases the glass transition temperature, the crosslinking density and improves the ultimate stress especially for those prepared from MCO2 and 30% lignin content from 8.2 MPa (lignin free) to 23.5 MPa. Scanning electron microscopy (SEM) micrographs of rupture surface after uniaxial tensile tests show ductile-to-brittle transition. The results show the possibility to develop polyurethane-type materials, varying technical grade Kraft lignin content, which cover a wide range of mechanical properties (from large elastic/low Young modulus to brittle/high Young modulus polyurethanes).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available