4.6 Article

Noninvasive Tidal Volume Measurements, Using a Time-of-Flight Camera, Under High-Flow Nasal Cannula-A Physiological Evaluation, in Healthy Volunteers

Journal

CRITICAL CARE MEDICINE
Volume 50, Issue 1, Pages E61-E70

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1097/CCM.0000000000005183

Keywords

high-flow nasal cannula; noncontact monitoring; respiratory rate; tidal volume; time-of-flight

Funding

  1. Brest University Hospital

Ask authors/readers for more resources

This study aimed to assess the effects of high-flow nasal cannula on tidal volume under various conditions. The results showed that increasing gas flow and mouth closing significantly increased tidal volume. Decreasing respiratory rate and mouth closing also increased tidal volume. Time-of-flight camera can be used to monitor the changes in tidal volume during high-flow nasal cannula application.
OBJECTIVES: The mechanisms of high-flow nasal cannula are still debated but may be mediated by the generation of low positive end-expiratory pressure and a washout of the airway dead space. The aims of this study were to assess the effects of high-flow nasal cannula on tidal volume using a noninvasive method using a time-of-flight camera, under various conditions. DESIGN: A physiologic evaluation in healthy volunteers. SETTING: An university hospital ICU. SUBJECTS: Ten healthy volunteers were included in a physiologic study (CamOpt study, ClinicalTrials.gov identifier: NCT04096183). INTERVENTIONS: All volunteers were submitted to 12 different conditions (i.e., gas flow [baseline = 0; 30-60 L/min]; mouth [open/closed]; respiratory rate [baseline; baseline + 10 breaths/min]). Tidal volume measurements were performed every minute, during a 6-minute recording period. In all combinations, reference respiratory rate was measured by using chronometric evaluation, over a 30-second period (RRREF), and by using the time-of-flight camera (RRTOF). MEASUREMENTS AND MAIN RESULTS: Tidal volume increased while increasing gas flow whatever the respiratory rate and mouth condition (p < 0.001). Similar results were observed whatever the experimental conditions (p < 0.01), except one (baseline respiratory rate + 10 breaths/min and mouth closed). Tidal volume increased while decreasing respiratory rate (p < 0.001) and mouth closing (p < 0.05). Proportion of tidal volume greater than 10, 15, and 20 mL/kg changed while increasing the flow. RRTOF was in agreement with RRREF (intraclass correlation coefficient, 0.96), with a low mean bias (0.55 breaths/min) and acceptable deviation. CONCLUSIONS: Time-of-flight enables to detect tidal volume changes under various conditions of high-flow nasal cannula application. Tidal volume increased significantly while increasing gas flow and mouth closing. Such technique might be useful to monitor the risk of patient self-inflicted lung injury or under assistance.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available