4.7 Article

A multi-objectives scheduling algorithm based on cuckoo optimization for task allocation problem at compile time in heterogeneous systems

Journal

EXPERT SYSTEMS WITH APPLICATIONS
Volume 60, Issue -, Pages 234-248

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.eswa.2016.05.014

Keywords

Task scheduling; Heterogeneous systems; Cuckoo optimization algorithm; Meta-heuristic algorithm; Makespan

Ask authors/readers for more resources

To handle scheduling of tasks on heterogeneous systems, an algorithm is proposed to reduce execution time while allowing for maximum parallelization. The algorithm is based on multi-objective scheduling cuckoo optimization algorithm (MOSCOA). In this algorithm, each cuckoo represents a scheduling solution in which the ordering of tasks and processors allocated to them are considered. In addition, the operators of cuckoo optimization algorithm means laying and immigration are defined so that it is usable for scheduling scenario of the directed acyclic graph of the problem. This algorithm adapts cuckoo optimization algorithm operators to create proper scheduling in each stage. This ensures avoiding local optima while allowing for global search within the problem space for accelerating the finding of a global optimum and delivering a relatively optimized scheduling with the least number of repetitions. Moving toward global optima is done through a target immigration operator in this algorithm and schedules in each repetition are pushed toward optimized schedules to secure global optima. The results of MOSCOA implementation on a large number of random graphs and real-world application graphs with a wide range characteristics show MOSCOA superiority over the previous task scheduling algorithms. (C) 2016 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available