4.7 Article

Compressive behaviour of seawater sea-sand concrete containing glass fibres and expansive agents

Journal

CONSTRUCTION AND BUILDING MATERIALS
Volume 292, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.conbuildmat.2021.123309

Keywords

Compressive behaviour; Expansive agents; Fibre reinforced concrete; Glass fibres; Seawater sea-sand concrete

Funding

  1. National Natural Science Foundation of China [12002091]
  2. Hong Kong Research Grants Council - Themebased Research Scheme

Ask authors/readers for more resources

Adding glass fibers and expansive agents significantly improves the compressive performance of seawater sea-sand concrete, providing experimental support and theoretical guidelines for designing SSSC structures.
The development and application of seawater sea-sand concrete (SSSC) can effectively reduce the utilisation of natural resources for producing concrete, thereby protecting ecological environments. However, the durability of reinforced SSSC is an important aspect. Previous studies have shown that the addition of fibres and expansive agents (EAs) can improve the durability of reinforced concrete structures by controlling crack development, reducing concrete porosity, and enhancing the tensile strength of concrete. In this study, the compressive behaviour of SSSC containing glass fibres (GFs) and EAs was studied. Furthermore, tests were performed to evaluate the combined effects of fibre length, GF content, and EA content on the workability of fresh concrete and the failure mechanism, compressive strength, strain at peak stress, and toughness of hardened concrete. It was found that the addition of GFs and EAs significantly improved the compressive performance of SSSC. The characteristics of compressive stress-strain curves were analysed and a constitutive model that could simulate the compressive stress-strain relationship of SSSC containing GFs and EAs was proposed. These outcomes are expected to provide experimental support and theoretical guidelines for designing SSSC structures. (c) 2021 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available