4.7 Article

Identification of potential plant bioactive as SARS-CoV-2 Spike protein and human ACE2 fusion inhibitors

Journal

COMPUTERS IN BIOLOGY AND MEDICINE
Volume 136, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.compbiomed.2021.104631

Keywords

S-RBD; ACE2; Ensemble clustering; MM-PBSA; Dicaffeoylquinic acid

Ask authors/readers for more resources

Through computational methods, Dicaffeoylquinic acid and Diacetylcurcumin were identified as potential inhibitors of SARS-CoV-2 S-RBD, suggesting further validation in in-vitro and in-vivo studies.
The Spike receptor binding domain (S-RBD) from SARS-CoV-2, a crucial protein for the entrance of the virus into target cells is known to cause infection by binding to a cell surface protein. Hence, reckoning therapeutics for the S-RBD of SARS-CoV-2 may address a significant way to target viral entry into the host cells. Herein, through insilico approaches (Molecular docking, molecular dynamics (MD) simulations, and end-state thermodynamics), we aimed to screen natural molecules from different plants for their ability to inhibit S-RBD of SARS-CoV-2. We prioritized the best interacting molecules (Diacetylcurcumin and Dicaffeoylquinic acid) by analysis of proteinligand interactions and subjected them for long-term MD simulations. We found that Dicaffeoylquinic acid interacted prominently with essential residues (Lys417, Gln493, Tyr489, Phe456, Tyr473, and Glu484) of S-RBD. These residues are involved in interactions between S-RBD and ACE2 and could inhibit the viral entry into the host cells. The in-silico analyses indicated that Dicaffeoylquinic acid and Diacetylcurcumin might have the potential to act as inhibitors of SARS-CoV-2 S-RBD. The present study warrants further in-vitro and in-vivo studies of Dicaffeoylquinic acid and Diacetylcurcumin for validation and acceptance of their inhibitory potential against SRBD of SARS-CoV-2.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available