4.7 Article

DNN-DTIs: Improved drug-target interactions prediction using XGBoost feature selection and deep neural network

Journal

COMPUTERS IN BIOLOGY AND MEDICINE
Volume 136, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.compbiomed.2021.104676

Keywords

Drug-target interactions; Multi-information fusion; XGBoost; Deep neural network

Funding

  1. National Natural Science Foundation of China [61863010]
  2. Key Research and Development Program of Shandong Province of China [2019GGX101001]
  3. Key Laboratory Open Foundation of Hainan Province [JSKX202001]

Ask authors/readers for more resources

The study introduces a novel method DNN-DTIs for predicting drug-target interactions, demonstrating superior accuracy compared to other predictors, especially suitable for drug repositioning research.
Analysis and prediction of drug-target interactions (DTIs) play an important role in understanding drug mechanisms, as well as drug repositioning and design. Machine learning (ML)-based methods for DTIs prediction can mitigate the shortcomings of time-consuming and labor-intensive experimental approaches, while providing new ideas and insights for drug design. We propose a novel pipeline for predicting drug-target interactions, called DNN-DTIs. First, the target information is characterized by a number of features, namely, pseudo-amino acid composition, pseudo position-specific scoring matrix, conjoint triad composition, transition and distribution, Moreau-Broto autocorrelation, and structural features. The drug compounds are subsequently encoded using substructure fingerprints. Next, eXtreme gradient boosting (XGBoost) is used to determine the subset of non redundant features of importance. The optimal balanced set of sample vectors is obtained by applying the synthetic minority oversampling technique (SMOTE). Finally, a DTIs predictor, DNN-DTIs, is developed based on a deep neural network (DNN) via a layer-by-layer learning scheme. Experimental results indicate that DNN-DTIs achieves better performance than other state-of-the-art predictors with ACC values of 98.78%, 98.60%, 97.98%, 98.24% and 98.00% on Enzyme, Ion Channels (IC), GPCR, Nuclear Receptors (NR) and Kuang's datasets. Therefore, the accurate prediction performance of DNN-DTIs makes it a favored choice for contributing to the study of DTIs, especially drug repositioning.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available