4.7 Article

Fabrication of ultralight helical porous carbon fibers with CNTs-confined Ni nanoparticles for enhanced microwave absorption

Journal

COMPOSITES PART B-ENGINEERING
Volume 215, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.compositesb.2021.108814

Keywords

Biomass-derived carbon; Chiral structure; Magnetic material; Microwave absorber; Catalytic self-deposition

Funding

  1. National Natural Science Foundation of China [21975206, 52003221]

Ask authors/readers for more resources

The ultralight magnetic helical porous carbon fibers (MHPFs) fabricated using catalytic self-deposition (CSD) technology exhibit exceptional microwave absorption performance, with a large absorption bandwidth and strong reflection loss.
It is extraordinarily difficult to develop low-cost and lightweight microwave absorbing materials that meet the needs of modern technology. Making rational use of biomass to prepare microwave absorbers is a sustainable way. Herein, we develop the catalytic self-deposition (CSD) technology and fabricate ultralight magnetic helical porous carbon fibers (MHPFs) with surface-grown carbon nanotubes (CNTs). There is no need to use expensive, flammable and explosive exogenous gases, avoiding the high energy consumption and potential safety issues faced by traditional energy-intensive catalytic chemical vapor deposition (CCVD) processes. The combined use of in-situ dipping and CSD technology realizes the in-situ growth and morphology control of CNTs encapsulated Ni nanocatalysts. Owing to the sophisticated structure, large specific surface area, complementary loss mechanisms and well-matched impedance, MHPFs exhibit exceptional microwave absorption performance. Notably, under the ultralow filler loading (5%), the strongest reflection loss (RL) exceeds -55.39 dB at 8.4 GHz, and the maximum absorption bandwidth (EAB, RL < -10 dB) reaches 4.7 GHz at the matching thickness of 2.00 mm. The study might shed light on the ultralow filler loadings and low-cost preparation of efficient microwave absorbers.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available