4.7 Article

Two-dimensional nonlinear energy sink for effective passive seismic mitigation

Publisher

ELSEVIER
DOI: 10.1016/j.cnsns.2021.105787

Keywords

Targeted energy transfer; Two dimensional nonlinear energy sink; Seismic mitigation; Vibration absorber

Ask authors/readers for more resources

This study introduces a two-dimensional nonlinear energy sink (2DNES) that can robustly suppress seismic excitations in arbitrary directions on the plane. Through numerical optimization and testing with historic earthquakes, it demonstrates the effectiveness of the optimized 2D-NES in mitigating multi-directional seismic excitations.
Structures and machines are often exposed to sudden high-amplitude vibrations that may cause local or extended structural failure. This calls for effective and reliable methodologies for vibration mitigation, one of which is the use of linear or nonlinear dynamic vibration absorbers. Current studies in this area have focused mainly on uni-directional vibration absorbers, thus limiting their applicability in practical applications where the excitation is applied in the plane. For example, real-life structures are subjected to a multitude of multi-directional seismic excitations, so uni-directional devices for mitigating such effects would have limited effectiveness. Accordingly, in this work we propose a two-dimensional nonlinear passive absorber, which we term two-dimensional nonlinear energy sink (2DNES), and investigate its efficacy to robustly suppress seismic excitations in arbitrary directions on the plane. First, a numerical optimization process is formulated to optimize the 2D-NES for the especially severe Kobe seismic excitation through a set of quantitative measures related to the seismic response of the primary structure. Then, its robustness is confirmed by applying two additional historic earthquakes with different frequency and energy contents. The results demonstrate that the optimized 2D-NES is capable of effectively and rapidly suppressing seismic, multi directional excitations. This work is one of the first studies of 2D nonlinear vibration absorbers capable of robust passive mitigation of seismic loads applied in arbitrary planar directions. This design can be suitable for broad applications ranging from the nano/micro-to the macro-scale. (c) 2021 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available