4.7 Article

Attachment of human adenovirus onto household paints

Journal

COLLOIDS AND SURFACES B-BIOINTERFACES
Volume 204, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.colsurfb.2021.111812

Keywords

Virus; Adhesion; Fomite; Paint; QCM-D; XDLVO

Funding

  1. National Science Foundation Partnerships for International Research and Education program [IIA-1243433]
  2. Vietnam Education Foundation

Ask authors/readers for more resources

The study evaluated the attachment of HAdV40 to surfaces coated with different paints and found hydrophobicity to be the main factor influencing virus adhesion. In high ionic strength solutions, a more negative energy of virus-paint interfacial interaction correlated with a higher areal mass density of attached viruses.
Attachment of human adenovirus 40 (HAdV40) onto surfaces coated with three compositionally different household paints was evaluated experimentally and interpreted based on measured physicochemical properties of the paints. Polar, dispersive and electrostatic interactions between HAdV40 and the paints were predicted using the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) model. Quartz crystal microbalance (QCM-D) was used to quantify virus attachment to paints from 1 mM and 150 mM NaCl solutions, with the latter having the ionic strength of a typical respiratory fluid. Acrylic latex water-based, alkyd water-based, and alkyd oil-based paints were all determined to be highly hydrophobic (Delta Gsws < - 48 mJ/m2). XDLVO modeling and preliminary QCM-D tests evaluated virus-paint interactions within and outside pH windows of favorable virus-paint electrostatic interactions. Hydrophobic and electrostatic interactions governed virus attachment while van der Waals interactions played a relatively minor role. In higher ionic strength solutions, the extent of virus attachment correlated with the free energy of virus-paint interfacial interaction, Delta GIFd0 = Delta GABd0 + Delta GLWd0 approximately equal to Delta GAB d0 : more negative energies corresponded to higher values of the areal mass density of attached viruses. Hydrophobicity was the dominant factor in determining virus adhesion from high ionic strength solutions where electrostatic interactions were screened out. The hydrophobicity of paints, while desirable for minimizing moisture intrusion, also facilitates attachment of colloids such as viruses. The results call for new approaches to the materials design of indoor paints with enhanced resistance to virus adhesion. Paints so formulated should help reduce human exposure to viruses.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available