4.6 Article

Folic acid decorated pH sensitive polydopamine coated honeycomb structured nickel oxide nanoparticles for targeted delivery of quercetin to triple negative breast cancer cells

Publisher

ELSEVIER
DOI: 10.1016/j.colsurfa.2021.127609

Keywords

Targeted drug delivery; Honeycomb structured NiO; Quercetin; Folic Acid; Polydopamine; Controlled release

Ask authors/readers for more resources

Targeted drug delivery using nanoparticles enhances drug concentration in specific areas, improving treatment efficacy and reducing side effects. Nickel oxide nanoparticles with a honeycomb structure were synthesized for targeted delivery to triple negative breast cancer cells, showing promising biocompatibility and anti-cancer activity.
Targeted drug delivery is an advanced method that increases the concentration of drug in the specific targeted area in the body. It improves efficacy of treatment and reduces the side effects in drug administration. The use of nanoparticles enhances the bioavailability, in vivo stability, intestinal absorption, solubility, sustained and targeted delivery. Quercetin (Q) is an anticancer agent used in cancer models due to its antioxidant and antitumor properties. Folic acid (FA) is the ligand used to activate receptor mediated endocytosis for targeted delivery of Quercetin. Polydopamine (PD) is pH sensitive and also inhibits angiogenesis. The quinones of PD serves as anchoring points for FA conjugation. In this work, honeycomb structured Nickel oxide (NiO) nanoparticles loaded with quercetin, surface modified with FA and PD was synthesized to target triple negative breast cancer cells. NiO was characterized by XRD, FTIR, Raman Spectroscopy, BET analysis and Zeta Potential. The honeycomb structure was confirmed by SEM. NiO size and morphology was analyzed by TEM. The porous structure of NiO enabled the efficient loading of Quercetin. Hemolysis analysis showed NiO has good hemocompatibility. The drug release profile confirmed a pH sensitive and controlled delivery of Quercetin. The drug release profile expressed higher release at lower pH. The drug release kinetic profile unveils the primary release mechanism to be diffusion controlled. MTT assay were performed against Vero cell line and MDA-MB-231 breast cancer cell line. The nanoformulation showed reduced cytotoxicity and good biocompatibility on Vero cells and appreciable anti-cancer activity on MDA-MB-231 breast cancer cell line.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available