4.5 Article

A Noncovalently Fused-Ring Asymmetric Electron Acceptor Enables Efficient Organic Solar Cells

Related references

Note: Only part of the references are listed.
Article Chemistry, Physical

Asymmetric Alkoxy and Alkyl Substitution on Nonfullerene Acceptors Enabling High-Performance Organic Solar Cells

Yuzhong Chen et al.

Summary: The paper presents a strategy of asymmetric alkyl and alkoxy substitution on Y-series nonfullerene acceptors, achieving great performance in organic solar cell devices. Asymmetric substitution on Y6 results in a molecule that maintains V-oc improvement and good solubility, enabling highly efficient nonfullerene OSCs. This asymmetric side-chain strategy shows potential for improving the performance of other NFA-material systems.

ADVANCED ENERGY MATERIALS (2021)

Article Chemistry, Physical

Asymmetric Acceptors Enabling Organic Solar Cells to Achieve an over 17% Efficiency: Conformation Effects on Regulating Molecular Properties and Suppressing Nonradiative Energy Loss

Wei Gao et al.

Summary: This study demonstrates that adjusting the molecular conformation of Y6-type NFAs can lead to high efficiency and reduced energy loss in organic solar cells.

ADVANCED ENERGY MATERIALS (2021)

Review Chemistry, Physical

Low-Bandgap Non-fullerene Acceptors Enabling High-Performance Organic Solar Cells

Wei Liu et al.

Summary: Recent advancements in organic solar cells have been achieved with the introduction of non-fullerene acceptors (NFAs), which offer a wide absorption range and easily tunable energy levels. Efficient OSCs rely on good donor-acceptor compatibility, morphological control, and device engineering. Researchers have summarized design and synthesis strategies for NFAs, as well as proposed innovative solutions for material and device engineering to advance the development and applications of OSCs.

ACS ENERGY LETTERS (2021)

Article Chemistry, Multidisciplinary

High-Performance Noncovalently Fused-Ring Electron Acceptors for Organic Solar Cells Enabled by Noncovalent Intramolecular Interactions and End-Group Engineering

Xin Zhang et al.

Summary: NFREAs have simple synthetic routes, high efficiencies, and low costs, but their efficiencies are still far behind those of FREAs. This study designed new NFREAs with precisely tuned electronic properties, charge transport, and energy loss to achieve high-performance solar cell efficiencies.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2021)

Article Multidisciplinary Sciences

18% Efficiency organic solar cells

Qishi Liu et al.

SCIENCE BULLETIN (2020)

Review Chemistry, Multidisciplinary

Progress of the key materials for organic solar cells

Yang Tong et al.

SCIENCE CHINA-CHEMISTRY (2020)

Review Chemistry, Multidisciplinary

Isomerization Strategy of Nonfullerene Small-Molecule Acceptors for Organic Solar Cells

Zhenghui Luo et al.

ADVANCED FUNCTIONAL MATERIALS (2020)

Article Chemistry, Multidisciplinary

A Fully Non-fused Ring Acceptor with Planar Backbone and Near-IR Absorption for High Performance Polymer Solar Cells

Ya-Nan Chen et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2020)

Review Chemistry, Multidisciplinary

A-DA'D-A non-fullerene acceptors for high-performance organic solar cells

Qingya Wei et al.

SCIENCE CHINA-CHEMISTRY (2020)

Review Chemistry, Physical

Asymmetric Nonfullerene Small Molecule Acceptors for Organic Solar Cells

Chao Li et al.

ADVANCED ENERGY MATERIALS (2019)

Review Chemistry, Multidisciplinary

Fluorinated Photovoltaic Materials for High-Performance Organic Solar Cells

Qunping Fan et al.

CHEMISTRY-AN ASIAN JOURNAL (2019)

Article Multidisciplinary Sciences

Simple non-fused electron acceptors for efficient and stable organic solar cells

Zhi-Peng Yu et al.

NATURE COMMUNICATIONS (2019)

Article Multidisciplinary Sciences

Locally collective hydrogen bonding isolates lead octahedra for white emission improvement

Bin-Bin Cui et al.

NATURE COMMUNICATIONS (2019)

Review Chemistry, Multidisciplinary

Nonfullerene Acceptor Molecules for Bulk Heterojunction Organic Solar Cells

Guangye Zhang et al.

CHEMICAL REVIEWS (2018)

Article Chemistry, Multidisciplinary

A Wide Band Gap Polymer with a Deep Highest Occupied Molecular Orbital Level Enables 14.2% Efficiency in Polymer Solar Cells

Sunsun Li et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2018)

Review Chemistry, Physical

Organic solar cells based on non-fullerene acceptors

Jianhui Hou et al.

NATURE MATERIALS (2018)

Review Nanoscience & Nanotechnology

Non-fullerene acceptors for organic solar cells

Cenqi Yan et al.

NATURE REVIEWS MATERIALS (2018)

Review Chemistry, Multidisciplinary

Organic and Polymeric Semiconductors Enhanced by Noncovalent Conformational Locks

Hui Huang et al.

CHEMICAL REVIEWS (2017)

Article Chemistry, Multidisciplinary

High-Performance Electron Acceptor with Thienyl Side Chains for Organic Photovoltaics

Yuze Lin et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2016)

Article Chemistry, Physical

Critical factors governing vertical phase separation in polymer-PCBM blend films for organic solar cells

Min Kim et al.

JOURNAL OF MATERIALS CHEMISTRY A (2016)

Article Chemistry, Multidisciplinary

A Large-Bandgap Conjugated Polymer for Versatile Photovoltaic Applications with High Performance

Maojie Zhang et al.

ADVANCED MATERIALS (2015)

Article Chemistry, Multidisciplinary

Influence of D/A Ratio on Photovoltaic Performance of a Highly Efficient Polymer Solar Cell System

Xia Guo et al.

ADVANCED MATERIALS (2012)

Article Chemistry, Multidisciplinary

Quantifying Bimolecular Recombination Losses in Organic Bulk Heterojunction Solar Cells

L. Jan Anton Koster et al.

ADVANCED MATERIALS (2011)

Article Materials Science, Multidisciplinary

Recombination in polymer-fullerene bulk heterojunction solar cells

Sarah R. Cowan et al.

PHYSICAL REVIEW B (2010)

Article Physics, Multidisciplinary

Photocurrent generation in polymer-fullerene bulk heterojunctions

VD Mihailetchi et al.

PHYSICAL REVIEW LETTERS (2004)