4.8 Article

Reconstructed Bismuth-Based Metal-Organic Framework Nanofibers for Selective CO2-to-Formate Conversion: Morphology Engineering

Journal

CHEMSUSCHEM
Volume 14, Issue 16, Pages 3402-3412

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/cssc.202101122

Keywords

carbon dioxide; electrocatalysis; formic acid; metal-organic frameworks; morphology engineering

Funding

  1. project Advanced Functional Nanorobots - EFRR [CZ.02.1.01/0.0/0.0/15_003/0000444]

Ask authors/readers for more resources

In this study, a bismuth-containing metal-organic framework CAU-17 was prepared and employed as an electrocatalyst for highly selective CO2-to-formate conversion. Morphology engineering was utilized to construct a hierarchical structure for CAU-17-fiber, achieving efficient formate production with high selectivity.
Electrochemical reduction of carbon dioxide (ERCO2) is an attractive and sustainable approach to close the carbon loop. Formic acid is a high-value and readily collectible liquid product. However, the current reaction selectivity remains unsatisfactory. In this study, the bismuth-containing metal-organic framework CAU-17, with morphological variants of hexagonal prisms (CAU-17-hp) and nanofibers (CAU-17-fiber), is prepared at room temperature through a wet-chemical approach and employed as the electrocatalyst for highly selective CO2-to-formate conversion. An H3BTC-mediated morphology reconstruction is systematically investigated and further used to build a CAU-17-fiber hierarchical structure. The as-prepared CAU-17-fiber_400 electrodes give the best electrocatalytic performance in selective and efficient formate production with FEHCOO- of 96.4 % and j(COOH-) of 20.4 mA cm(-2) at -0.9 V-RHE. This work provides a new mild approach for synthesis and morphology engineering of CAU-17 and demonstrates the efficacy of morphology engineering in regulating the accessible surface area and promoting the activity of MOF-based materials for ERCO2.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available