4.7 Article

Stimulated biodegradation of all alkanes in soil

Journal

CHEMOSPHERE
Volume 278, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2021.130444

Keywords

Stimulated biodegradation of all alkanes; Efficient biodegradation; Number of stimulated alkanes; Ammonia partition coefficient; Relative activity

Funding

  1. Natural Science Foundation of China (NSFC) [51778524]
  2. Provincial Natural Science Foundation of Shaanxi [2019ZDLSF06-03]

Ask authors/readers for more resources

The biodegradation efficiency of all alkanes in soil can be improved by adding stimulater and indigenous bacteria. The distribution of ammonia and the use of TPH as a main carbon source in the late stimulation stage significantly enhance the biodegradation effect in soil.
This study aim to investigate the biodegradation of all alkanes in soil by adding stimulater and indigenous bacteria. The experiments were carried out by adding native bacteria and the stimulater to the soil S1 (total petroleum hydrocarbon (TPH) = 22,745 mg/kg) and soil S2 (TPH = 13,833 mg/kg) to explored the effect and mechanism of the stimulated biodegradation of all alkanes in soil. The results showed that most alkanes were used as the main carbon source of TPH in the late stimulation stage, so that all alkanes could be biodegraded by stimulating. The biodegradation of C-10 - C-19 (4527 mg/kg) and C-20 - C-30 (8530 mg/kg) were much higher than the stimulated biodegradation of partial alkanes, which indicated that the biodegradation effect of TPH was greatly improved. In addition, for the stimulated biodegradation of all alkanes group, the relative activity of TPH (TPH biodegradation/DOC consumption) was nearly 5 times that of the stimulated biodegradation of partial alkanes group in the late stimulation stage. The amount of ammonia allocated to TPH in the late stimulation stage was nearly 10 times that of DOC, and the organic matter components changed greatly in the early stimulation stage, but there was basically no change in the later stage. It showed that the hydrocarbon degraders in the stimulated biodegradation of all alkanes group used DOC as the main carbon source in the early stimulation stage and mainly degrade TPH in the later stage, which improved the biodegradation efficiency of petroleum hydrocarbons. (C) 2021 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available