4.7 Article

Heavy metal contents, mobility and origin in agricultural topsoils of the Galapagos Islands

Journal

CHEMOSPHERE
Volume 272, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2021.129821

Keywords

Galapagos Islands; Volcanic ash soils; Agricultural soils; Heavy metals; Trace elements; Aqua regia

Funding

  1. Prometeo Project of Ecuador's Secretariat of Higher Education, Science, Technology and Innovation (SENESCYT)
  2. office of Graduate Support at BOKU University
  3. University of Natural Resources and Life Sciences Vienna (BOKU)

Ask authors/readers for more resources

This study aimed to examine the total heavy metal contents in agricultural soils of the Galapagos Islands and identify trends related to duration of exposure to weathering processes. The results showed that certain metal concentrations were high, potentially posing ecological or health risks.
While the Galapagos Islands have been renowned for their unique flora and fauna since the time of Charles Darwin, the soils of the isolated island chain have been mostly overlooked and little information on their heavy metal contents is available. The aim of this study was therefore to examine the total heavy metal (Cd, Co, Cr, Cu, Ni, Pb, U, Zn) contents of soils from the agricultural areas on islands Isabela, Santa Cruz and San Cristobal, and identify trends with duration of exposure to weathering processes. Additionally, the mobility of these elements was assessed using ammonium nitrate extraction. In general, levels of Cd, Co, Cr, Cu, Ni and Zn were high compared to other world locations, while Pb levels were low and U levels were similar. Ni, Co, Cr, and to a lesser extent Pb and U tended to accumulate with increasing weathering duration. Soil concentrations of Cd, Zn, Cu, and possibly Pb and U, may have been influenced by use of agrochemicals, particularly on Santa Cruz Island. Mobility of Cd displayed an increasing trend with soil age, while Ni mobility decreased. Many soils had total contents of Cd, Co, Cr, Cu, Ni and Zn above threshold values indicating possible ecological or health risks. Systematic examination of trace element contents in soils from pristine national park areas would further assist in the delineation of background levels and the development of soil quality standards to ensure crop quality, animal and human health on this unique island chain. (C) 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available