4.7 Article

Treatment of wastewater reverse osmosis concentrate using alginate-immobilised microalgae: Integrated impact of solution conditions on algal bead performance

Journal

CHEMOSPHERE
Volume 276, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2021.130028

Keywords

Reverse osmosis concentrate; Nutrient removal; Wastewater treatment; Alginate beads; Immobilised Chlorella vulgaris; Stress factors

Ask authors/readers for more resources

Alginate can be used for encapsulating microalgal cells for wastewater treatment, but its effectiveness may be limited by high ion concentrations. The study found that the pH, alkalinity, and salinity of ROC can affect the stability and performance of alginate-entrapped Chlorella vulgaris during ROC treatment.
Alginate can be used for entrapment of microalgal cells in gel beads to achieve high-rate treatment of wastewater and can overcome the difficulties of cell separation that would occur in suspended micro-algae treatment systems. The potential for alginate beads to disintegrate in the presence of high ion concentrations could limit the use of alginate entrapment for treating municipal wastewater reverse osmosis concentrate (ROC). The combined effect of the pH, alkalinity, and salinity of the ROC that impact the physical stability, chemical characteristics, biomass production, and nutrient removal performance of alginate-entrapped Chlorella vulgaris for treating the ROC was investigated. Water adsorption resulting from the loss of calcium from the alginate matrix was the initiating cause of reduction of the algal bead stability. The combination of alkalinity >400 mg/L and pH >= 9.5 led to a >65% reduction in compressive strength and thus disintegration of beads during ROC treatment. However, alginate beads of C. vulgaris were sufficiently stable and were capable of nutrient remediation (up to 100% TP and 85% TN per treatment cycle of 48 h over a 10-day period) and biomass production (up to 340 mg/L/d) when salinity, pH, and alkalinity levels were <8 g TDS/L, 7-9.5, and <400 mg/L, respectively. Empirical models that were developed and validated could enable the prediction of the performance of the algal beads for various ROC compositions. This study enhances the insight and decision-making regarding the feasibility of the alginate-immobilised microalgal system for treating municipal wastewater ROC streams. (C) 2021 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available