4.6 Article

Electrochemistry of Quinones with Respect to their Role in Biomedical Chemistry

Journal

CHEMICAL RECORD
Volume 21, Issue 9, Pages 2332-2343

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/tcr.202100069

Keywords

Quinones; Diquinonyl amines; cyclic voltammetry; semiquinone radicals; poly radical-anions

Ask authors/readers for more resources

Quinones are a class of antitumor agents known for inhibiting cancer cells growth and generating stable semiquinone radicals through electrochemical study. Understanding the relationship between quinones and amino acids contributes to expanding the arsenal of potential clinical compounds.
Quinones are ubiquitous in nature and form one of the largest class of antitumor agents approved for clinical use. They are known to be efficient in inhibiting cancer cells growth. Under physiological conditions they can undergo non-enzymatic one-electron reduction to give the moderately toxic species of semiquinone radical-anion. Thus, electrochemical study of quinones might provide a basic knowledge on semi-quinone radicals formation in both in vivo and in vitro under different media. Several processes are outlined briefly and discussed in the present article. Previously we investigated the electrochemical and spectral properties of omega-N-quinonyl amino acids. Such quinone-bearing peptides are known to be cytotoxic and of potential clinical significance. We were able to prove that the omega-amino quinonyl compounds are very effective in producing stable semiquinone radicals. Moreover, a direct relation was found between the first reduction potentials of the quinonyl moiety and their reactivity towards the omega-amino acids. In order to increase our knowledge of such amino quinonyl compounds and enlarge the arsenal of such cytotoxic compounds, a series of N,N-diquinonyl amines (1-6) bearing an internal proton (stems from the NH moiety) were synthesized. Their electron-transfer capabilities were probed by cyclic voltammetry measurements, in dichloromethane. It was found that the acidic NH group linking the two quinonyl moieties undergoes an initial electrochemical reduction step and generates a nitride anion. This step is followed by further reductions to yield quasi-stable semiquinone radicals and polyanions, Since these acidic diquinones (1-6) serve also as a source of internal proton donors even in non-polar medium, they might cause protonation of basic radical-anions and polyanion intermediates during the various electrochemical stages. The processes are demonstrated and discussed by analyzing different mechanistic schemes. The successful generation of relatively stable semiquinone radicals is a prerequisite for the manifestation of site directed antitumor activity by these bis-quinonyl amino derivatives. Based on the values of their redox potentials some of them could be promising candidates for clinical development.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available