4.8 Article

Carbon fibre electrodes for ultra long cycle life pseudocapacitors by engineering the nano-structure of vertical graphene and manganese dioxide

Journal

CARBON
Volume 177, Issue -, Pages 260-270

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.carbon.2021.01.155

Keywords

Multilayer electrode; Vertical graphene; Manganese dioxide; Cycling performance; Pseudocapacitor

Funding

  1. University of New SouthWales

Ask authors/readers for more resources

A new carbon fibre electrode enhanced by multilayer structure of vertical graphene and manganese dioxide demonstrates exceptional cycling performance, with high stability at high capacitance and excellent rate performance, providing a new route for improving the cycling performance of pseudocapacitors.
Critical to the applications of pseudocapacitors is the cycling performance of electrodes. Here, we present a new carbon fibre electrode enhanced by multilayer structure of vertical graphene (VG) and manganese dioxide (MnO2) to achieve a cycling performance at a very high areal capacitance (546.3 mF/cm(2)) that outperforms most of the reported pseudocapacitors in the literature. Particularly, this multilayer electrode is able to retain 99.3% of its initial capacitance after 10,000 cycles at scan rate of 200 mV/s. The retention ratio is significantly higher than the state-of-art value. In addition, this electrode shows excellent rate performance (75.4% capacitance retention for current density from 1 to 10 mA/cm(2)). This exceptionally high stability at high capacitance and rate performance originates from the multilayer electrode's effectiveness in self-replenishing the degraded MnO2 in the outer layer. The microcracks and micro holes induced in the VG layer by electrical charge/discharge cycling enable the inner layer MnO2 to progressively participate in the redox reaction. Results from energy dispersive spectroscopy, X-ray photoelectron, and Raman spectroscopy confirm the self-replenishing mechanism responsible for the exceptionally stable performance. The new multilayer electrode designed herein provides a new route for improving the cycling performance of pseudocapacitors. (c) 2021 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available