4.7 Article

Effect of chlorhexidine gluconate on mechanical and anti-microbial properties of thermoplastic cassava starch

Journal

CARBOHYDRATE POLYMERS
Volume 275, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.carbpol.2021.118690

Keywords

Biopolymer; Manihot esculenta; chlorhexidine gluconate; Antimicrobial

Funding

  1. Chiang Mai University
  2. Thailand Science Research and Innovation (TSRI)

Ask authors/readers for more resources

Antimicrobial thermoplastic starch was developed using a blend of cassava starch, glycerol, and chlorhexidine gluconate (CHG), with CHG content affecting the tensile strength and hardness of the samples suitable for different types of microorganisms.
Antimicrobial thermoplastic starch (TPS) was developed using cassava starch, glycerol, and chlorhexidine gluconate (CHG) blend. CHG was added at concentrations of 1%, 5%, 10%, and 20% (wt./wt.) as an antimicrobial additive. The tensile strength and hardness of the blended samples increased with the chlorhexidine gluconate content, especially for 1% CHG. wt./wt. (12.6 MPa and 94, respectively). The TPS/CHG20 blend exhibited a large phase of CHG and recrystallization of TPS. The water solubility decreased with the addition of CHG. Nuclear magnetic resonance data confirmed a reaction between the hydroxyl groups of TPS and the amino groups of CHG. The TPS/CHG20% exhibited an inhibition zone for three bacterial types (Staphylococcus aureus, Escherichia coli, and Bacillus cereus) and three fungal types (Rhizopus oligosporus, Aspergillus oryzae, and Candida albicans). CHG acted simultaneously as a chain extender and an antimicrobial additive for TPS, improving its tensile strength, hardness, and anti-microbial properties.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available