4.5 Article

Screening of miRNAs in plasma as a diagnostic biomarker for cardiac disease based on optimization of extraction and qRT-PCR condition assay through amplification efficiency

Journal

BMC BIOTECHNOLOGY
Volume 21, Issue 1, Pages -

Publisher

BMC
DOI: 10.1186/s12896-021-00710-w

Keywords

qRT-PCR; miRNA; Amplification efficiency; Biomarker; Plasma

Funding

  1. National Research Foundation of Korea (NRF) - Ministry of Science and ICT [2020R1A4A4079494, 2019R1A2C2004052]
  2. Korea Basic Science Institute (National research Facilities and Equipment Center) - Ministry of Education [2021R1A6C101A442]
  3. Korea Institute of Science and Technology [2E30441]

Ask authors/readers for more resources

This study successfully optimized the conditions for extraction and qRT-PCR, improving miRNA yields while minimizing interference and loss. The research aimed to achieve reliable results by reducing contaminants and maximizing product yields for miRNA analysis in plasma samples.
Background Although quantitative real-time PCR (qRT-PCR) is a common and sensitive method for miRNAs analysis, it is necessary to optimize conditions and minimize qRT-PCR inhibitors to achieve reliable results. The aim of this study was to minimize interference by contaminants in qRT-PCR, maximize product yields for miRNA analyses, and optimize PCR conditions for the reliable screening of miRNAs in plasma. Methods The annealing temperature was first optimized by assessing amplification efficiencies. The effects of extraction conditions on levels of inhibitors that interfere with PCR were evaluated. The tested extraction conditions were the volume of the upper layer taken, number of chloroform extractions, and the inclusion of ethanol washing, a process that reduces PCR interference during RNA extraction using TRIzol. Results An acceptable amplification efficiency of RT-qPCR was achieved by the optimization of the annealing temperature of the tested miRNAs and by the collection a supernatant volume corresponding to about 50% of the volume of TRIzol with triple chloroform extraction. These optimal extraction and PCR conditions were successfully applied to plasma miRNA screening to detect biomarker candidates for the diagnosis of acute myocardial infarction. Conclusion This is the first study to optimize extraction and qRT-PCR conditions, while improving miRNA yields and minimizing the loss of extracted miRNA by evaluations of the amplification efficiency.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available