4.7 Article

Design and linkage optimization of ursane-thalidomide-based PROTACs and identification of their targeted-degradation properties to MDM2 protein

Journal

BIOORGANIC CHEMISTRY
Volume 111, Issue -, Pages -

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.bioorg.2021.104901

Keywords

Ursolic; PROTAC; MDM2; Thalidomide; Antitumor

Funding

  1. National Nonprofit Institute Research Grant of CAFINT, China [CAFYBB2018GA001]
  2. Research Foundation of Hunan Education Bureau of China [19A13]

Ask authors/readers for more resources

This study investigated the design and cellular activity of six UA PROTAC hydrochloride compounds, with one compound showing remarkable in vitro antitumor activity. The compound induced significant degradation of MDM2 protein and promoted the expression of P21 and PUMA proteins, leading to inhibition of proliferation and promotion of apoptosis in A549 cells. This work demonstrated proof of designing the efficient target protein degradation by UA PROTACs with the POE linkers.
Ursolic acid (UA) is an accessible triterpenoid, widely applied in the design and synthesis of antitumor compounds. However, the mechanism of its anti-tumor effect is still unclear. To verify the molecular mechanism of its biological activity, based on the bifunctional activity of ubiquitination and subsequent proteasomal degradation of the target protein of the proteolysis-targeting chimeras (PROTACs) strategy, here we report the design, synthesis and cellular activity of six UA PROTAC hydrochloride compounds 1A -1F, in which UA acts as the binding ligand of the PROTAC and is linked to thalidomide (E3 ligand) through a series of synthetic linkers. The results revealed that compound 1B, connected with a POE-3 (3-Polyoxyether) possessed remarkable in vitro antitumor activity (with the IC50 value of 0.23 similar to 0.39 mu M against A549, Huh7, HepG2). WB results demonstrated that the administration of compound 1B induced significant degradation of MDM2 (only 25% to that of SM1), and promoted the expression of P21 and PUMA proteins, and thus inhibited the proliferation (77.67% of 1B vs 60.37% of CON in G1 phase) and promoted the apoptosis (26.74% of 1B vs 3.35% of CON) of A549 cells. This work demonstrated proof of designing the efficient target protein degradation by UA PROTACs with the POE linkers. In addition, we confirmed that UA possess the characteristic of targeted-binding the protein of murine double minute-2 protein (MDM2). This will lay a foundation for the comprehensive utilization of forest natural compound UA.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available