4.6 Article

Linear parameter varying model of COVID-19 pandemic exploiting basis functions

Journal

BIOMEDICAL SIGNAL PROCESSING AND CONTROL
Volume 70, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.bspc.2021.102999

Keywords

Basis function; COVID-19; Linear parameter varying (LPV) model; Pandemic; Quarantine; Social distancing; Stability analysis; SARS-CoV-2

Ask authors/readers for more resources

This paper proposes a conceptual model for the COVID-19 pandemic, using real data and solving linear least square problems to obtain parameters that are updated in real-time. The system behavior is modeled according to the changes in parameters, and the impact of social distancing and quarantine on severe infection and hospitalization numbers is studied.
Current outbreaks of the COIVD-19 pandemic demonstrate a global threat. In this paper, a conceptual model is developed for the COVID-19 pandemic, in which the people in society are divided into Susceptible, Exposed, Minor infected (Those who need to be quarantined at home), Hospitalized (Those who are in need of hospitalization), Intensive infected (ventilator-in-need infected), Recovered and Deceased. In this paper, first, the model that is briefly called SEMHIRD for a sample country (Italy as an example) is considered. Then, exploiting the real data of the country, the parameters of the model are obtained by assuming some basis functions on the collected data and solving linear least square problems in each window of data to estimate the time-varying parameters of the model. Thus, the parameters are updated every few days, and the system behavior is modeled according to the changes in the parameters. Then, the Linear Parameter Varying (LPV) Model of COVID19 is derived, and its stability analysis is presented. In the end, the influence of different levels of social distancing and quarantine on the variation of severely infected and hospitalized people is studied.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available