4.7 Article

CXCR2, a novel target to overcome tyrosine kinase inhibitor resistance in chronic myelogenous leukemia cells

Journal

BIOCHEMICAL PHARMACOLOGY
Volume 190, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.bcp.2021.114658

Keywords

CXCR2; IL-8; mTOR; c-Myc; Tyrosine kinase inhibitors; Drug resistance

Funding

  1. Bio & Medical Technology Development Program of the National Research Foundation - Ministry of Science ICT [2017M3A9C8060403]
  2. National Research Foundation of Korea [2017M3A9C8060403] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

Ask authors/readers for more resources

The study shows that inhibiting the CXCR2-mTOR-c-Myc cascade has significant therapeutic effects in overcoming both TKI-sensitive and TKI-insensitive CML. The CXCR2 antagonist SB225002 demonstrates promising results in treating TKI-resistant CML patients.
Chronic myeloid leukemia (CML) is a reciprocal translocation disorder driven by a breakpoint cluster region (BCR)-Abelson leukemia virus (ABL) fusion gene that stimulates abnormal tyrosine kinase activity. Tyrosine kinase inhibitors (TKIs) are effective in treating Philadelphia chromosome (Ph) + CML patients. However, the appearance of TKI-resistant CML cells is a hurdle in CML treatment. Therefore, it is necessary to identify novel alternative treatments targeting tyrosine kinases. This study was designed to determine whether C-X-C chemokine receptor 2 (CXCR2) could be a novel target for TKI-resistant CML treatment. Interleukin 8 (IL-8), a CXCR2 ligand, was significantly increased in the bone marrow serum of initially diagnosed CML patients and TKIresistant CML cell conditioned media. CXCR2 antagonists suppressed the proliferation of CML cells via cell cycle arrest in the G2/M phase. CXCR2 inhibition also attenuated mTOR, c-Myc, and BCR-ABL expression, leading to CML cell apoptosis, irrespective of TKI responsiveness. Moreover, SB225002, a CXCR2 antagonist, caused higher cell death in TKI-resistant CML cells than TKIs. Using a mouse xenograft model, we confirmed that SB225002 suppresses tumor growth, with a prominent effect on TKI-resistant CML cells. Our findings demonstrate that IL-8 is a prognostic factor for the progression of CML. Inhibiting the CXCR2-mTOR-c-Myc cascade is a promising therapeutic strategy to overcome TKI-sensitive and TKI-insensitive CML. Thus, CXCR2 blockade is a novel therapeutic strategy to treat CML, and SB225002, a commercially available CXCR2 antagonist, might be a candidate drug that could be used to treat TKI-resistant CML.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available