4.6 Article

Mammalian knock out cells reveal prominent roles for atlastin GTPases in ER network morphology

Journal

EXPERIMENTAL CELL RESEARCH
Volume 349, Issue 1, Pages 32-44

Publisher

ELSEVIER INC
DOI: 10.1016/j.yexcr.2016.09.015

Keywords

Endoplasmic reticulum; Hereditary spastic paraplegia; Lipid droplet; GTPase; CRISPR/Cas9; Morphology

Funding

  1. Intramural Research Program of the National Institute of Neurological Disorders and Stroke, National Institutes of Health [NS002992]

Ask authors/readers for more resources

Atlastins are large, membrane-bound GTPases that participate in the fusion of endoplasmic reticulum (ER) tubules to generate the polygonal ER network in eukaryotes. They also regulate lipid droplet size and inhibit bone morphogenetic protein (BMP) signaling, though mechanisms remain unclear. Humans have three atlastins (ATLI, ATL2, and ATL3), and ATLI and ATL3 are mutated in autosomal dominant hereditary spastic paraplegia and hereditary sensory neuropathies, Cellular investigations of atlastin orthologs in most yeast, plants, flies and worms are facilitated by the presence of a single or predominant isoform, but loss-of-function studies in mammalian cells are complicated by multiple, broadly-expressed paralogs. We have generated mouse NIH-3T3 cells lacking all three mammalian atlastins (Atl 1/2/3) using CRISPR/Cas9-mediated gene knockout (KO). ER morphology is markedly disrupted in these triple KO cells, with prominent impairment in formation of three-way ER tubule junctions. This phenotype can be rescued by expression of distant orthologs from Saccharomyces cereuisiae (Seylp) and Arabidopsis (ROOT HAIR DEFECTIVE3) as well as any one of the three human atlastins. Minimal, if any, changes are observed in the morphology of mitochondria and the Golgi apparatus. Alterations in BMP signaling and increased sensitivity to ER stress are also noted, though effects appear more modest. Finally, atlastins appear required for the proper differentiation of NIH-3T3 cells into an adipocyte-like phenotype. These findings have important implications for the pathogenesis of hereditary spastic paraplegias and sensory neuropathies associated with atlastin mutations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available