4.7 Article

Silicon carbide nanocomposites reinforced with disordered graphitic carbon formed in situ through oxidation of Ti3C2 MXene during sintering

Journal

Publisher

SPRINGERNATURE
DOI: 10.1007/s43452-021-00236-0

Keywords

Ceramic matrix composites (CMCs); Mechanical properties; Sintering; MXene

Funding

  1. Materials Technologies project by Warsaw University of Technology under the Excellence Initiative: Research University

Ask authors/readers for more resources

This study investigates the manufacturing of silicon carbide composites with the addition of Ti3C2 MXene, showing a significant increase in fracture toughness and hardness when Ti3C2 MXene is added.
This article describes the manufacturing of silicon carbide composites with the addition of quasi-two-dimensional titanium carbide Ti3C2, known as MXene. The composites were obtained by the powder metallurgy technique, consolidated with the use of the Spark Plasma Sintering method at 1900 degrees C and dwelled for 30 min. The influence of the Ti3C2 MXene addition on the microstructure and mechanical properties of the composites was investigated. The structure of the MXene phase after the sintering process was also analyzed. The results showed a significant increase (almost 50%) of fracture toughness for composites with the addition of 0.2 wt% Ti3C2 MXene. In turn, the highest hardness, 23.2 GPa, was noted for the composite with the addition of the 1.5 wt% Ti3C2 MXene phase. This was an increase of over 10% in comparison to the reference sample. The analysis of chemical composition and observations using a transmission electron microscope showed that the Ti3C2 MXene phase oxidizes during sintering, resulting in the formation of crystalline, highly defected, disordered graphite structures. The presence of these structures in the microstructure, similarly to graphene, significantly affects the hardness and fracture toughness of silicon carbide.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available