4.7 Article

Influence of dynamic properties on scaffoldings safety

Journal

Publisher

SPRINGERNATURE
DOI: 10.1007/s43452-021-00295-3

Keywords

Scaffolding; Human excited vibrations; Dynamic analysis; Accident predictor

Funding

  1. National Centre for Research and Development within the Applied Research Programme [PBS3/A2/19/2015]

Ask authors/readers for more resources

Scaffoldings are commonly used in high altitude and hard-to-reach places, posing potential dangers to workers. Analyzing vibration probabilities and natural frequencies can help improve safety measures, such as adding bracings or reducing anchor lengths.
Scaffoldings are used for works at height and in places that are hard to reach, which makes such works dangerous to employees and accidents occur frequently. Loads generated by scaffolding users cannot be avoided. Moving workers excite low-frequency (1-2 Hz) vibrations and scaffoldings as slender structures are prone to such dynamic action. The method for determining the probability of vibrations excitation is presented here. The quantity representing this probability is called the predictor of occurrence of a dangerous situation due to vibrations induced by a walking employee. The predictor of resonance with ith natural frequency requires an analysis of the scaffolding dynamic behavior. The frequencies and the natural mode shapes of vibrations were determined. Numerical dynamic simulations of the worker's movement on the penultimate decks of two scaffoldings were carried out, as well. Predictor analysis was made for single frequencies and combinations of frequency pairs. The predictor values calculated for the first frequency or combinations with it are the highest ones, however the probability of resonance is not only affected by the first frequency. To improve safety, the natural frequencies should be increased. For longitudinal vibrations, this can be done by adding more bracing or reducing lengths of anchors. Increasing the number of anchors gives good results in both directions. During scaffolding design of both typical and atypical constructions, one must determine the natural frequencies and then, if the first natural frequency is less than 4.0 Hz, perform a dynamic scaffolding analysis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available