4.7 Article

On the design of Phase Change Materials based thermal management systems for electronics cooling

Journal

APPLIED THERMAL ENGINEERING
Volume 196, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.applthermaleng.2021.117276

Keywords

Phase Change Material; PCM; Electronics cooling; 3D Periodic structures; Latent heat storage

Ask authors/readers for more resources

The thermal conductivity of Phase Change Materials has a significant impact on the performance of passive electronic thermal management systems, with the effectiveness of enhanced heat transfer surfaces depending on operating conditions. It is important to consider the properties of the Phase Change Material, system requirements, and real operating conditions when designing such systems.
This work aims at explaining the effect of the operating conditions on the performance of passive electronic thermal management systems based on Phase Change Materials. The low thermal conductivity of the Phase Change Materials is usually felt as one of their major limitations that hinders the effective heat transfer capability of the whole passive system. However, the present study experimentally demonstrates that the real improvement due to the use of enhanced heat transfer surfaces depends upon the operating conditions. The experimental tests were run on a latent thermal management system based on a paraffin wax with a 70 degrees C phase change temperature embedded in two different samples: an aluminum 3D pyramidal periodic structure having a porosity of 0.95 and a cell dimension of 10 mm realized via additive manufacturing, and an empty sample used as reference. The system was experimentally tested under several working conditions to simulate the real operation of an electronic device, including complete melting/solidification cycle and intermittent operations at different ambient temperatures, in natural and forced convection. The main outcome of the present study is that, when considering the junction temperature, the use of the enhanced surface does not always lead to an improvement of the heat transfer performance especially during fast intermittent operations and thus the maximum effective thermal conductivity cannot be always considered the main design objective. A novel integrated design approach should include the properties of the Phase Change Material, the system requirements and the real operating conditions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available