4.8 Article

Multi-step short-term wind speed prediction based on integrated multi-model fusion

Journal

APPLIED ENERGY
Volume 298, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.apenergy.2021.117248

Keywords

Wind speed; Multi-step prediction; Multi-model fusion; Decomposition; Stochastic configuration networks; Support vector machine

Funding

  1. Natural Science Foundation of Liaoning Province [2020-MS-210]

Ask authors/readers for more resources

The proposed wind speed prediction approach is based on mode decomposition and multi-model fusion, utilizing support vector machine and stochastic configuration network for prediction models, with parameter optimization using particle swarm optimization algorithm. Results show improved accuracy compared to state-of-the-art models, demonstrating the effectiveness of the integrated multi-model fusion approach in enhancing wind speed prediction.
Wind power generation is uncontrollable and non-adjustable green energy. The accurate prediction of wind speed is of great significance to the operation and maintenance of wind farms and the safety of the power grid. A novel wind speed prediction approach based on mode decomposition combined with integrated multi-model fusion is proposed. The purpose of the integrated multi-model fusion method is to improve the accuracy of wind speed prediction. Two decomposition algorithms, empirical mode decomposition and local mean decomposition are used to decompose the wind speed into several components respectively. After decomposition, the odd and even sequences are extracted to form two new sequences. According to the characteristics of the components obtained from the decomposition of odd and even sequences, stochastic configuration network and support vector machine are selected as the prediction models. Meanwhile, the particle swarm optimization algorithm is introduced to optimize the parameters of support vector machine. After all decomposition components of the odd and even sequence are predicted by stochastic configuration networks and support vector machine, the predicted values are superimposed to obtain the final predicted value of the odd and even sequence. Finally, the predicted values of odd and even series are integrated to get the final predicted value of wind speed. By comparing the actual and predicted values of short-term wind speed, RMSE, R-2, MAE, MAPE, Pearson's test, prediction error distribution box-plot, and Taylor diagram are used to judge the performance indicators of the prediction model. The case study results show that, compared with the state-of-the-art prediction models, RMSE decreases by about 0.1, MAPE decreases by about 0.05%, MAE decreases by about 0.2, and R-2 increases by about 0.2. The other performance indicators of the proposed approach are also better than other models, which prove that the integrated multi-model fusion model can improve the accuracy and effectiveness of wind speed prediction. The proposed prediction approach has high prediction accuracy, can correctly reflect the short-term wind speed law, and has a good application prospect.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available