4.8 Review

Toward efficient single-atom catalysts for renewable fuels and chemicals production from biomass and CO2

Journal

APPLIED CATALYSIS B-ENVIRONMENTAL
Volume 292, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.apcatb.2021.120162

Keywords

Single-atom catalysts; Biomass valorization; CO2 conversion; Renewable fuels and chemicals

Funding

  1. U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences

Ask authors/readers for more resources

The translation discusses the transformation of biomass and CO2 into renewable fuels and chemicals using single-atom catalysts, highlighting the potential benefits of these catalysts in terms of efficiency and thermal stability. Additionally, it compares the catalytic efficiency of various catalysts reported so far to provide a fair assessment, and provides perspectives on future research directions in this field.
Transformation of biomass and CO2 into renewable value-added chemicals and fuels has been identified as a promising strategy to fulfill high energy demands, lower greenhouse gas emissions, and exploit under-utilized resources. Cost-effective and performance-efficient catalysts are of great importance to lowering the conversion cost of biomass and CO2. Significant progress has been made to advance the catalyst design for these processes, with metal catalysts playing a critical role in many involved catalytic reactions. Traditional nanoparticle-based metal catalysts still require improvement in metal utilization rates, stability, and selectivity tunability. Single-atom catalysts, which have maximum atomic efficiency and a uniform and tunable metal center, as well as an adjustable metal-support interaction, provide potential opportunities to boost catalyst efficiency and thermal stability. Their well-defined and uniform structure also provides advantages to fundamental studies for understanding of the intrinsic reaction mechanism and site requirement in biomass and CO2 conversion. Here, we summarize and highlight the recent advances in converting biomass and CO2 to renewable fuels and chemicals using single-atom catalysts. We discuss the design principles of single-atom catalysts and their potential applications to biomass and CO2 upgrading as well as the origins of catalytic activity. Moreover, we compare the catalytic efficiency of various catalysts reported thus to provide a fair assessment of these catalysts. Finally, perspectives are given on the interesting fields that may guide future studies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available