4.5 Review Book Chapter

Wave Dark Matter

Journal

Publisher

ANNUAL REVIEWS
DOI: 10.1146/annurev-astro-120920-010024

Keywords

axion; ultralight scalar; halo substructure; black hole; structure formation; wave interference; axion detection experiments

Funding

  1. Simons Fellowship in Theoretical Physics
  2. Department of Energy [DE-SC0011941]

Ask authors/readers for more resources

This paper reviews the physics and phenomenology of wave dark matter, outlining its particle physics motivations and rich phenomenology. Wave interference in dark matter leads to unique structures like vortices and solitons, with potential implications for observed astronomical phenomena. Detection experiments and theoretical predictions for wave dark matter are discussed, highlighting the importance of understanding the stochastic nature of waves in interpreting constraints and measurements.
We review the physics and phenomenology of wave dark matter: a bosonic dark matter candidate lighter than about 30 eV. Such particles have a de Broglie wavelength exceeding the average interparticle separation in a galaxy like the Milky Way and are, thus, well described as a set of classical waves. We outline the particle physics motivations for such particles, including the quantum chromodynamics axion as well as ultralight axion-like particles such as fuzzy dark matter. The wave nature of the dark matter implies a rich phenomenology: Wave interference gives rise to order unity density fluctuations on de Broglie scale in halos. One manifestation is vortices where the density vanishes and around which the velocity circulates. There is one vortex ring per de Broglie volume on average. For sufficiently low masses, soliton condensation occurs at centers of halos. The soliton oscillates and undergoes random walks, which is another manifestation of wave interference. The halo and subhalo abundance is expected to be suppressed at small masses, but the precise prediction from numerical wave simulations remains to be determined. For ultralight similar to 10(-22) eV dark matter, the wave interference substructures can be probed by tidal streams or gravitational lensing. The signal can be distinguished from that due to subhalos by the dependence on stream orbital radius or image separation. Axion detection experiments are sensitive to interference substructures for wave dark matter that is moderately light. The stochastic nature of the waves affects the interpretation of experimental constraints and motivates the measurement of correlation functions. Current constraints and open questions, covering detection experiments and cosmological, galactic, and black hole observations, are discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available