4.8 Article

An Adjacent Atomic Platinum Site Enables Single-Atom Iron with High Oxygen Reduction Reaction Performance

Related references

Note: Only part of the references are listed.
Review Chemistry, Multidisciplinary

Low-PGM and PGM-Free Catalysts for Proton Exchange Membrane Fuel Cells: Stability Challenges and Material Solutions

Lei Du et al.

Summary: Fuel cells are gaining popularity as a clean energy technology, but challenges in cost reduction and integration of low-PGM catalysts remain significant barriers to their development.

ADVANCED MATERIALS (2021)

Article Chemistry, Multidisciplinary

Atomic-Level Modulation of Electronic Density at Cobalt Single-Atom Sites Derived from Metal-Organic Frameworks: Enhanced Oxygen Reduction Performance

Yuanjun Chen et al.

Summary: This study demonstrates the correlation between atomic configuration induced electronic density of single-atom Co active sites and oxygen reduction reaction (ORR) performance. The designed and synthesized Co-1-N3PS/HC catalyst shows outstanding ORR activity in alkaline and acidic media, surpassing Pt/C and most non-precious ORR electrocatalysts. Insights from this work promote rational design of efficient catalysts.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2021)

Article Chemistry, Physical

Cobalt single atom site catalysts with ultrahigh metal loading for enhanced aerobic oxidation of ethylbenzene

Yu Xiong et al.

Summary: The study successfully synthesized cobalt single atom site catalysts supported on carbon nitride with high metal loading. These catalysts exhibited excellent catalytic properties for the oxidation of ethylbenzene in air, showing high turnover frequency, selectivity, and stability. DFT calculations revealed the low energy barrier and high resistance to water of these catalysts, contributing to their robust catalytic performance.

NANO RESEARCH (2021)

Review Chemistry, Multidisciplinary

Carbon-Supported Single-Atom Catalysts for Formic Acid Oxidation and Oxygen Reduction Reactions

Ali Han et al.

Summary: Recent research activities have focused on single-atom catalysts to enhance the catalytic performance of fuel cells as an alternative to platinum group metals, showing potential for higher efficiency and cost-effectiveness.

SMALL (2021)

Article Chemistry, Multidisciplinary

Highly Active Fe/Pt Single-Atom Bifunctional Electrocatalysts on Biomass-Derived Carbon

Lijuan Cao et al.

Summary: Fe/Pt single-atom bifunctional electrocatalysts were successfully synthesized and exhibited excellent performance in both ORR and HER, providing a feasible approach for synthesizing electrocatalysts with abundant single-atom sites using renewable biomass as a precursor.

ACS SUSTAINABLE CHEMISTRY & ENGINEERING (2021)

Article Chemistry, Multidisciplinary

Electronic Spin Moment As a Catalytic Descriptor for Fe Single-Atom Catalysts Supported on C2N

Wenhui Zhong et al.

Summary: The study reveals that the catalytic activity of Fe single-atom supported on C2N for oxygen reduction reaction is influenced by the spin states. Manipulation of the spin states can effectively tune the catalytic activity, with the potential to design transition metal single-atom catalysts with improved performance.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2021)

Article Multidisciplinary Sciences

One-step synthesis of single-site vanadium substitution in 1T-WS2 monolayers for enhanced hydrogen evolution catalysis

Ali Han et al.

Summary: This study demonstrates significantly enhanced hydrogen evolution reaction performance by preparing single-atom-V catalysts in 1T-WS2 monolayers. The activated V-atom sites play a vital role in enhancing the HER activity. Additionally, the coral-like solid-solution RuIr is shown to be a long-lived catalyst with high activity.

NATURE COMMUNICATIONS (2021)

Article Materials Science, Multidisciplinary

Pd single-atom monolithic catalyst: Functional 3D structure and unique chemical selectivity in hydrogenation reaction

Zedong Zhang et al.

Summary: The study introduces a simple and practical method to synthesize a monolithic single-atom catalyst supported on nitrogen-doped carbon foams, showing excellent activity and selectivity in semi-hydrogenation reactions. The catalyst's great integrity and mechanical strength allow for easy separation and recycling, demonstrating high reusability and stability. The discovery of isolated site effect offers a new pathway for designing highly selective catalysts, while the development of monolithic single-atom catalysts opens up new opportunities for practical applications.

SCIENCE CHINA-MATERIALS (2021)

Article Chemistry, Multidisciplinary

Understanding of Neighboring Fe-N4-C and Co-N4-C Dual Active Centers for Oxygen Reduction Reaction

Huanxin Li et al.

Summary: The study reports FeCo-N-doped hollow carbon nanocages as efficient catalysts with neighboring Fe-N-4-C and Co-N-4-C dual active centers, showing better catalytic activity than Fe single-metal catalyst for oxygen reduction reaction. This highlights the important role of synergy between dual active centers in reducing the reaction energy barriers for ORR.

ADVANCED FUNCTIONAL MATERIALS (2021)

Article Chemistry, Multidisciplinary

Operando Cooperated Catalytic Mechanism of Atomically Dispersed Cu-N4 and Zn-N4 for Promoting Oxygen Reduction Reaction

Miaomiao Tong et al.

Summary: The dual-metal single-atom catalyst Cu/Zn-NC shows excellent ORR activity and stability, with operando XANES and DFT calculations revealing the synergistic interaction between Cu-N-4 and Zn-N-4 as well as the transitions between different states.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2021)

Article Chemistry, Physical

First demonstration of phosphate enhanced atomically dispersed bimetallic FeCu catalysts as Pt-free cathodes for high temperature phosphoric acid doped polybenzimidazole fuel cells

Yi Cheng et al.

Summary: The study developed atomically dispersed bimetallic FeCu coordinated with nitrogen-doped carbon nanotubes (FeCu/N-CNTs) as Pt-free oxygen reduction reaction (ORR) electrocatalysts, which showed similar performance to Pt/C but with better stability and enhanced activity in the presence of phosphate. DFT calculations revealed that the phosphate promotion effect was due to stronger binding of phosphate on Cu sites, leading to lower activation energy barrier for O-2 cleavage. FeCu/N-CNTs were also found to have better ORR activity compared to Fe single atom catalysts coordinated with nitrogen-doped carbon nanotubes, Fe/N-CNTs. The results demonstrate the potential of FeCu/N-CNTs as true Pt-free, highly active and durable cathodes in high temperature polymer electrolyte fuel cells based on PA/PBI.

APPLIED CATALYSIS B-ENVIRONMENTAL (2021)

Article Multidisciplinary Sciences

Regulating Fe-spin state by atomically dispersed Mn-N in Fe-N-C catalysts with high oxygen reduction activity

Gege Yang et al.

Summary: The research uncovered the mechanism of the oxygen reduction reaction on dual-metal atomically dispersed Fe,Mn/N-C catalyst, demonstrating its excellent performance and durability in fuel cells and metal-air batteries.

NATURE COMMUNICATIONS (2021)

Article Chemistry, Physical

Engineering Pt and Fe dual-metal single atoms anchored on nitrogen-doped carbon with high activity and durability towards oxygen reduction reaction for zinc-air battery

Xiongwei Zhong et al.

Summary: A novel strategy for encapsulating Pt species into Fe-doped zeolite imidazolate framework to obtain PtFeNC catalyst was proposed in this study. The catalyst exhibited excellent performance in zinc-air battery, showing potential for practical applications in energy storage.

APPLIED CATALYSIS B-ENVIRONMENTAL (2021)

Review Chemistry, Physical

Single-Atom Materials: Small Structures Determine Macroproperties

Jiarui Yang et al.

Summary: Single-atom materials (SAMs) have been widely studied in various fields, and their high performance is largely attributed to the microstructure inside the SAM. Achieving the goal of regulating structures and understanding the relationship between macroproperties and small structures are essential but require further efforts in this field. This review comprehensively summarizes and discusses the regulation on microstructures, the characterization of microstructures, and the relationship between macroproperties and small structures, mainly focusing on the application of SAM in catalysts. Proposed challenges and future developments aim to provide an overall view and guidance for future research in this area.

SMALL STRUCTURES (2021)

Article Chemistry, Multidisciplinary

Edge-Rich Fe-N4 Active Sites in Defective Carbon for Oxygen Reduction Catalysis

Wang Xin et al.

ADVANCED MATERIALS (2020)

Article Chemistry, Multidisciplinary

Evolution Pathway from Iron Compounds to Fe1(II)-N4 Sites through Gas-Phase Iron during Pyrolysis

Jingkun Li et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2020)

Article Chemistry, Multidisciplinary

Single-Atom Iron Catalysts on Overhang-Eave Carbon Cages for High-Performance Oxygen Reduction Reaction

Chun-Chao Hou et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2020)

Article Chemistry, Multidisciplinary

Bridge Bonded Oxygen Ligands between Approximated FeN(4)Sites Confer Catalysts with High ORR Performance

Liyuan Gong et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2020)

Article Chemistry, Multidisciplinary

Coordination Tunes Selectivity: Two-Electron Oxygen Reduction on High-Loading Molybdenum Single-Atom Catalysts

Cheng Tang et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2020)

Article Nanoscience & Nanotechnology

Single-atom Rh/N-doped carbon electrocatalyst for formic acid oxidation

Yu Xiong et al.

NATURE NANOTECHNOLOGY (2020)

Review Chemistry, Physical

Atomic Thickness Catalysts: Synthesis and Applications

Ali Han et al.

SMALL METHODS (2020)

Article Chemistry, Multidisciplinary

Chemical Vapor Deposition for Atomically Dispersed and Nitrogen Coordinated Single Metal Site Catalysts

Shengwen Liu et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2020)

Article Multidisciplinary Sciences

Engineering unsymmetrically coordinated Cu-S1N3 single atom sites with enhanced oxygen reduction activity

Huishan Shang et al.

NATURE COMMUNICATIONS (2020)

Article Multidisciplinary Sciences

Iron phthalocyanine with coordination induced electronic localization to boost oxygen reduction reaction

Kejun Chen et al.

NATURE COMMUNICATIONS (2020)

Review Chemistry, Multidisciplinary

Electronic Metal-Support Interaction of Single-Atom Catalysts and Applications in Electrocatalysis

Jiarui Yang et al.

ADVANCED MATERIALS (2020)

Article Materials Science, Multidisciplinary

High-Density Planar-like Fe2N6 Structure Catalyzes Efficient Oxygen Reduction

Nan Zhang et al.

MATTER (2020)

Article Chemistry, Multidisciplinary

Versatile Strategy for Tuning ORR Activity of a Single Fe-N4 Site by Controlling Electron-Withdrawing/Donating Properties of a Carbon Plane

Yeongdong Mun et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2019)

Article Electrochemistry

Palladium Single-Atom Catalysts Supported on C@C3N4 for Electrochemical Reactions

Hee-Eun Kim et al.

CHEMELECTROCHEM (2019)

Review Chemistry, Physical

Tailor-Made Pt Catalysts with Improved Oxygen Reduction Reaction Stability/Durability

Kiranpal Singh et al.

ACS CATALYSIS (2019)

Article Chemistry, Multidisciplinary

Thermally Driven Structure and Performance Evolution of Atomically Dispersed FeN4 Sites for Oxygen Reduction

Jiazhan Li et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2019)

Article Chemistry, Multidisciplinary

Climbing the Apex of the ORR Volcano Plot via Binuclear Site Construction: Electronic and Geometric Engineering

Meiling Xiao et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2019)

Article Multidisciplinary Sciences

Highly selective oxygen reduction to hydrogen peroxide on transition metal single atom coordination

Kun Jiang et al.

NATURE COMMUNICATIONS (2019)

Article Chemistry, Physical

Recent Insights into the Oxygen-Reduction Electrocatalysis of Fe/N/C Materials

Wang Wang et al.

ACS CATALYSIS (2019)

Article Chemistry, Multidisciplinary

The Quasi-Pt-Allotrope Catalyst: Hollow PtCo@single-Atom Pt1 on Nitrogen-Doped Carbon toward Superior Oxygen Reduction

Wei-Hong Lai et al.

ADVANCED FUNCTIONAL MATERIALS (2019)

Review Chemistry, Multidisciplinary

Pt-Based electrocatalysts with high atom utilization efficiency: from nanostructures to single atoms

Lei Zhang et al.

ENERGY & ENVIRONMENTAL SCIENCE (2019)

Article Chemistry, Multidisciplinary

Efficient Oxygen Reduction Reaction (ORR) Catalysts Based on Single Iron Atoms Dispersed on a Hierarchically Structured Porous Carbon Framework

Zhengping Zhang et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2018)

Article Multidisciplinary Sciences

Unveiling the high-activity origin of single-atom iron catalysts for oxygen reduction reaction

Liu Yang et al.

PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA (2018)

Article Chemistry, Multidisciplinary

Coordination of Atomic Co-Pt Coupling Species at Carbon Defects as Active Sites for Oxygen Reduction Reaction

Longzhou Zhang et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2018)

Review Chemistry, Multidisciplinary

Oxygen Activation and Radical Transformations in Heme Proteins and Metalloporphyrins

Xiongyi Huang et al.

CHEMICAL REVIEWS (2018)

Article Chemistry, Multidisciplinary

Hollow N-Doped Carbon Spheres with Isolated Cobalt Single Atomic Sites: Superior Electrocatalysts for Oxygen Reduction

Yunhu Han et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2017)

Article Chemistry, Physical

Support Effects in Single-Atom Platinum Catalysts for Electrochemical Oxygen Reduction

Sungeun Yang et al.

ACS CATALYSIS (2017)

Article Multidisciplinary Sciences

Splitting of the O-O bond at the heme-copper catalytic site of respiratory oxidases

Federica Poiana et al.

SCIENCE ADVANCES (2017)

Article Chemistry, Multidisciplinary

Isolated Single Iron Atoms Anchored on N-Doped Porous Carbon as an Efficient Electrocatalyst for the Oxygen Reduction Reaction

Yuanjun Chen et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2017)

Article Chemistry, Multidisciplinary

Single-Atom Catalyst of Platinum Supported on Titanium Nitride for Selective Electrochemical Reactions

Sungeun Yang et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2016)

Article Multidisciplinary Sciences

Tuning selectivity of electrochemical reactions by atomically dispersed platinum catalyst

Chang Hyuck Choi et al.

NATURE COMMUNICATIONS (2016)

Article Chemistry, Physical

Reaction Pathway for Oxygen Reduction on FeN4 Embedded Graphene

Shyam Kattel et al.

JOURNAL OF PHYSICAL CHEMISTRY LETTERS (2014)