4.8 Article

The Critical Role of Additive Sulfate for Stable Alkaline Seawater Oxidation on Nickel-Based Electrodes

Related references

Note: Only part of the references are listed.
Article Chemistry, Multidisciplinary

Design of a Multilayered Oxygen-Evolution Electrode with High Catalytic Activity and Corrosion Resistance for Saline Water Splitting

Jihong Li et al.

Summary: This study reported the design of a multilayered oxygen-evolution electrode synthesized through direct thermal boronization to meet the requirements of seawater electrolysis. The electrode consists of an oxidized NiFeBx alloy layer, a NiFeBx alloy interlayer, and a NiFe alloy substrate, which are conductive to the generation and stabilization of the catalytic active phase gamma-(Ni,Fe)OOH.

ADVANCED FUNCTIONAL MATERIALS (2021)

Article Chemistry, Physical

High-performance anion exchange membrane alkaline seawater electrolysis

Yoo Sei Park et al.

Summary: A Ni-doped FeOOH anode was developed for high-efficiency anion exchange membrane alkaline seawater electrolysis, showing good catalytic activity in half-cell tests and higher performance in 1.0 M KOH + seawater. The anion exchange membrane electrolyzer catalyzed by Ni-doped FeOOH exhibited a high current density and energy conversion efficiency in seawater conditions.

JOURNAL OF MATERIALS CHEMISTRY A (2021)

Review Chemistry, Multidisciplinary

Advances in hydrogen production from electrocatalytic seawater splitting

Cheng Wang et al.

Summary: Seawater is a promising electrolyte for industrial hydrogen production and refining of edible salt. Efficient and stable electrocatalysts are essential for water electrolysis, leading to significant achievements in recent years.

NANOSCALE (2021)

Review Chemistry, Physical

Seawater electrocatalysis: activity and selectivity

Sakila Khatun et al.

Summary: Seawater is considered a major hydrogen reservoir, but the presence of multielements and interference in electrochemistry, particularly chlorine chemistry, make electrocatalytic water splitting challenging. To achieve sustainable seawater electrolysis, focus should not only on electrocatalyst activity but also on selective oxygen evolution reaction to suppress corrosive chlorine chemistry.

JOURNAL OF MATERIALS CHEMISTRY A (2021)

Review Chemistry, Physical

Seawater electrocatalysis: activity and selectivity

Sakila Khatun et al.

Summary: Seawater is considered a major hydrogen reservoir, but the presence of multiple elements and interference in electrochemistry, especially chlorine chemistry, make seawater electrolysis challenging. To make seawater electrolysis sustainable, efficient oxygen evolution reaction and suppression of corrosive chlorine chemistry by electrocatalysts are highly desirable.

JOURNAL OF MATERIALS CHEMISTRY A (2021)

Article Chemistry, Physical

Heterogeneous lamellar-edged Fe-Ni(OH)2/Ni3S2 nanoarray for efficient and stable seawater oxidation

Baihua Cui et al.

Summary: The study presents a heterostructure of Ni3S2 nanoarray with Fe-Ni(OH)(2) edges for efficient catalysis in seawater electrolysis, demonstrating high Faraday efficiency for oxygen evolution reaction and good stability. The introduction of Fe activator and heterostructure design offer massive active and selective sites, providing insights for the rational design of high-performance Fe-based electrodes for industrial seawater electrolysis.

NANO RESEARCH (2021)

Article Chemistry, Multidisciplinary

Hydration-Effect-Promoting Ni-Fe Oxyhydroxide Catalysts for Neutral Water Oxidation

Ning Wang et al.

ADVANCED MATERIALS (2020)

Review Energy & Fuels

Electrolysis of low-grade and saline surface water

Wenming Tong et al.

NATURE ENERGY (2020)

Article Chemistry, Multidisciplinary

Unveiling the Promotion of Surface-Adsorbed Chalcogenate on the Electrocatalytic Oxygen Evolution Reaction

Yanmei Shi et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2020)

Article Chemistry, Physical

Stable complete seawater electrolysis by using interfacial chloride ion blocking layer on catalyst surface

Amol R. Jadhav et al.

JOURNAL OF MATERIALS CHEMISTRY A (2020)

Article Chemistry, Multidisciplinary

Efficient direct seawater electrolysers using selective alkaline NiFe-LDH as OER catalyst in asymmetric electrolyte feeds

Soeren Dresp et al.

ENERGY & ENVIRONMENTAL SCIENCE (2020)

Article Chemistry, Physical

Electrolytic splitting of saline water: Durable nickel oxide anode for selective oxygen evolution

J. Juodkazyte et al.

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY (2019)

Article Multidisciplinary Sciences

Solar-driven, highly sustained splitting of seawater into hydrogen and oxygen fuels

Yun Kuang et al.

PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA (2019)

Article Chemistry, Physical

Direct Electrolytic Splitting of Seawater: Opportunities and Challenges

Soeren Dresp et al.

ACS ENERGY LETTERS (2019)

Article Multidisciplinary Sciences

Non-noble metal-nitride based electrocatalysts for high-performance alkaline seawater electrolysis

Luo Yu et al.

NATURE COMMUNICATIONS (2019)

Article Chemistry, Physical

Featherlike NiCoP Holey Nanoarrys for Efficient and Stable Seawater Splitting

Qingliang Lv et al.

ACS APPLIED ENERGY MATERIALS (2019)

Review Chemistry, Multidisciplinary

Fuel Production from Seawater and Fuel Cells Using Seawater

Shunichi Fukuzumi et al.

CHEMSUSCHEM (2017)

Article Chemistry, Multidisciplinary

In Situ Activating Ubiquitous Rust towards Low-Cost, Efficient, Free-Standing, and Recoverable Oxygen Evolution Electrodes

Haixia Zhong et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2016)

Article Chemistry, Multidisciplinary

Three-dimensional NiFe layered double hydroxide film for high-efficiency oxygen evolution reaction

Zhiyi Lu et al.

CHEMICAL COMMUNICATIONS (2014)

Article Chemistry, Multidisciplinary

An Investigation of Thin-Film Ni-Fe Oxide Catalysts for the Electrochemical Evolution of Oxygen

Mary W. Louie et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2013)

Article Materials Science, Multidisciplinary

Evaluation of the corrosion resistance of anodized aluminum 6061 using electrochemical impedance spectroscopy (EIS)

Yuelong Huang et al.

CORROSION SCIENCE (2008)

Article Chemistry, Analytical

Surface structures at the initial stages in passive film formation on Ni(111) electrodes in acidic electrolytes

M Nakamura et al.

JOURNAL OF ELECTROANALYTICAL CHEMISTRY (2004)