4.2 Article

Masticatory muscle architectural correlates of dietary diversity in Canidae, Ursidae, and across the order Carnivora

Publisher

WILEY
DOI: 10.1002/ar.24748

Keywords

allometry; bite force; PCSA; scaling

Funding

  1. Division of Integrative Organismal Systems [15-57125]
  2. National Sciences Foundation

Ask authors/readers for more resources

This study analyzed architectural data of carnivoran families to explore the relationship between masticatory musculature and dietary ecology. The results showed that there were significant correlations between muscle tissue of musteloids and dietary size (DS) as well as dietary mechanical properties (DMP). This trend may reflect the increased morphological and dietary diversity of musteloids compared to other carnivoran groups.
Carnivorans represent extreme ecomorphological diversity, encompassing remarkable variation in form, habitat, and diet. The relationship between the masticatory musculature and dietary ecology has been explored in a number of carnivoran lineages, including felids and the superfamily Musteloidea. In this study, we present novel architectural data on two additional carnivoran families-Ursidae and Canidae-and supplement these previous studies with additional felid, musteloid, herpestid, hyaenid, and viverrid taxa (a total of 53 species across 10 families). Gross dissection data were collected following a standardized protocol-sharp dissection followed by chemical digestion. Summed jaw adductor forces were also transformed into bite force estimates (BF) using osteologically calculated leverages. All data were linearized, log-transformed, and size-adjusted using two proxies for each taxon-body mass (BM) and cranial geometric mean-to assess relative scaling trends. These architectural data were then analyzed in the context of dietary ecology to examine the impact of dietary size (DS) and dietary mechanical properties (DMP). Muscle mass, physiological cross-sectional area, and BF scaled with isometry or positive allometry in all cases, whereas fascicle lengths (FLs) scaled with isometry or negative allometry. With respect to diet, BM-adjusted FLs were strongly correlated with DS in musteloids, but not in any other lineage. The relationship between size-adjusted BF and DMP was also significant within musteloids, and across the sample as a whole, but not within other individual lineages. This interfamilial trend may reflect the increased morphological and dietary diversity of musteloids relative to other carnivoran groups.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available