4.8 Article

Construction of a Dye-Sensitized and Gold Plasmon-Enhanced Cathodic Photoelectrochemical Biosensor for Methyltransferase Activity Assay

Journal

ANALYTICAL CHEMISTRY
Volume 93, Issue 29, Pages 10310-10316

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.analchem.1c01797

Keywords

-

Funding

  1. National Natural Science Foundation of China [21735003, 21605096, 21974080]
  2. Taishan Scholar Program of Shandong Province of China [ts20110829]
  3. Award for Team Leader Program of Taishan Scholars of Shandong Province, China

Ask authors/readers for more resources

DNA methyltransferases can be important biomarkers for cancers and genetic diseases, and a dye-sensitized and gold plasmon-enhanced cathodic photoelectrochemical biosensor has been developed based on p-type covalent organic polymers for the signal-on measurement of M.SssI methyltransferase. This biosensor shows high sensitivity and good selectivity, capable of screening inhibitors and detecting M.SssI MTase in serum.
DNA methyltransferases may function as important biomarkers of cancers and genetic diseases. Herein, we develop a dye-sensitized and gold plasmon-enhanced cathodic photoelectrochemical (PEC) biosensor on the basis of p-type covalent organic polymers (COPs) for the signal-on measurement of M.SssI methyltransferase (M.SssI MTase). The cathodic PEC biosensor is constructed by the in situ growth of p-type COP films onto a glass coated with indium tin oxide and the subsequent assembly of biotin- and HS-labeled double-stranded DNA (dsDNA) probes onto the COP film via biotin-streptavidin interaction. The dsDNA probe contains the recognition sequence of M.SssI MTase. The COP thin films possess a porous ultrathin nanosheet structure with abundant active sites, facilitating the generation of a high photocurrent compared with the hydrothermally synthesized ones. The presence of DNA methyltransferases can prevent the digestion of restriction endonuclease HpaII, consequently inducing the introduction of gold nanoparticles (AuNPs) to the dsDNA probes via the S-Au bond and the intercalation of rhodamine B (RhB) into the DNA grooves to produce a high photocurrent due to the dye-photosensitized enhancement and AuNP-mediated surface plasmon resonance. However, in the absence of M.SssI MTase, HpaII digests the dsDNA probes, and neither AuNPs nor RhB can be introduced onto the electrode surface, leading to a low photocurrent. This cathodic PEC biosensor possesses high sensitivity and good selectivity, and it can screen the inhibitors and detect M.SssI MTase in serum as well.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available