4.5 Article

Heparin-based blood purification attenuates organ injury in baboons with Streptococcus pneumoniae pneumonia

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajplung.00337.2020

Keywords

animal disease models; extracorporeal circulation; inflammasomes; pathogen-associated molecular pattern molecules; sepsis

Funding

  1. DARPA Grant [HR0011-15-2-0057]
  2. National Heart, Lung, and Blood Institute [K08 HL-130557]

Ask authors/readers for more resources

Based on a baboon model, this study found that heparin-based blood purification significantly reduced levels of circulating S. pneumoniae DNA and cytokines, providing renal protection in severe pneumococcal pneumonia and septic shock. The purification was also associated with less severe acute kidney injury, metabolic disorders, and shock, supporting its potential for future clinical studies in critically ill septic patients.
Bacterial pneumonia is a major cause of morbidity and mortality worldwide despite the use of antibiotics, and novel therapies are urgently needed. Building on previous work, we aimed to 1) develop a baboon model of severe pneumococcal pneumonia and sepsis with organ dysfunction and 2) test the safety and efficacy of a novel extracorporeal blood filter to remove proinflammatory molecules and improve organ function. After a dose-finding pilot study, 12 animals were inoculated with Streptococcus pneumoniae [5 x 10(9) colony-forming units (CFU)], given ceftriaxone at 24 h after inoculation, and randomized to extracorporeal blood purification using a filter coated with surface-immobilized heparin sulfate (n = 6) or sham treatment (n = 6) for 4 h at 30 h after inoculation. For safety analysis, four uninfected animals also underwent purification. At 48 h, necropsy was performed. Inoculated animals developed severe pneumonia and septic shock. Compared with sham-treated animals, septic animals treated with purification displayed significantly less kidney injury, metabolic acidosis, hypoglycemia, and shock (P < 0.05). Purification blocked the rise in peripheral blood S. pneumoniae DNA, attenuated bron-choalveolar lavage (BAL) CCL4, CCL2, and IL-18 levels, and reduced renal oxidative injury and classical NLRP3 inflammasome activation. Purification was safe in both uninfected and infected animals and produced no adverse effects. We demonstrate that heparin-based blood purification significantly attenuates levels of circulating S. pneumoniae DNA and BAL cytokines and is renal protective in baboons with severe pneumococcal pneumonia and septic shock. Purification was associated with less severe acute kidney injury, metabolic derangements, and shock. These results support future clinical studies in critically ill septic patients.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available