4.6 Article

Inhibition of CXCR2 plays a pivotal role in re-sensitizing ovarian cancer to cisplatin treatment

Journal

AGING-US
Volume 13, Issue 10, Pages 13405-13420

Publisher

IMPACT JOURNALS LLC
DOI: 10.18632/aging.203074

Keywords

chemoresistance; high grade serous ovarian cancer; CXCR2; tumor microenvironment

Ask authors/readers for more resources

Our study revealed the pivotal role of CXCR2 in ovarian cancer chemoresistance, suggesting the development of lipophilic molecules targeting nuclear CXCR2 as a promising alternative to genetic engineering approaches in combating OC.
cDNA microarray data conducted by our group revealed overexpression of CXCL2 and CXCL8 in ovarian cancer (OC) microenvironment. Herein, we have proven that the chemokine receptor, CXCR2, is a pivotal molecule in re-sensitizing OC to cisplatin, and its inhibition decreases cell proliferation, viability, tumor size in cisplatinresistant cells, as well as reversed the overexpression of mesenchymal epithelium transition markers. Altogether, our study indicates a central effect of CXCR2 in preventing tumor progression, due to acquisition of cisplatin chemoresistant phenotype by tumor cells, and patients' high lethality rate. We found that the overexpression of CXCR2 by OC cells is persistent and anomalously confined to the cellular nuclei, thus pointing to an urge in developing highly lipophilic molecules that promptly permeate cells, bind to and inhibit nuclear cDNA microarray data conducted by our group revealed overexpression of CXCL2 and CXCL8 in ovarian cancer (OC) microenvironment. Herein, we have proven that the chemokine receptor, CXCR2, is a pivotal molecule in re-sensitizing OC to cisplatin, and its inhibition decreases cell proliferation, viability, tumor size in cisplatinresistant cells, as well as reversed the overexpression of mesenchymal epithelium transition markers. Altogether, our study indicates a central effect of CXCR2 in preventing tumor progression, due to acquisition of cisplatin chemoresistant phenotype by tumor cells, and patients' high lethality rate. We found that the overexpression of CXCR2 by OC cells is persistent and anomalously confined to the cellular nuclei, thus pointing to an urge in developing highly lipophilic molecules that promptly permeate cells, bind to and inhibit nuclear CXCR2 to fight OC, instead of relying on the high-cost genetic engineered cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available