4.8 Article

Universal Peptide Hydrogel for Scalable Physiological Formation and Bioprinting of 3D Spheroids from Human Induced Pluripotent Stem Cells

Journal

ADVANCED FUNCTIONAL MATERIALS
Volume 31, Issue 41, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.202104046

Keywords

3D culture; bioprinting; gel degradability; hiPSC physiological spheroids; self-healing hydrogels

Funding

  1. KSU
  2. Brigham Research Institute
  3. KSU-Agricultural Experiment Station [19-212-J]

Ask authors/readers for more resources

A universal peptide hydrogel is used to manufacture hiPSC spheroids, demonstrating excellent biocompatibility and superior biological properties. This method can be applied in the fields of tissue engineering and organ regeneration for physiologically formed structures.
Human induced pluripotent stem cells (hiPSCs) are used for drug discoveries, disease modeling and show great potential for human organ regeneration. 3D culture methods have been demonstrated to be an advanced approach compared to the traditional monolayer (2D) method. Here, a self-healing universal peptide hydrogel is reported for manufacturing physiologically formed hiPSC spheroids. With 100 000 hiPSCs encapsulated in 500 mu L hydrogel, approximate to 50 000 spheroids mL(-1) (diameter 20-50 mu m) are generated in 5 d. The spheroids in the universal peptide hydrogel are viable (85-96%) and show superior pluripotency and differentiation potential based on multiple biomarkers. Cell performance is influenced by the degradability of the hydrogel but not by gel strength. Without postprinting crosslinking aided by UV or visible lights or chemicals, various patterns are easily extruded from a simple star to a kidney-like organ shape using the universal peptide hydrogel bioink showing acceptable printability. A 20.0 x 20.0 x 0.75 mm(3) sheet is finally printed with the universal peptide hydrogel bioink encapsulating hiPSCs and cultured for multiple days, and the hiPSC spheroids are physiologically formed and well maintained.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available