4.8 Article

Functional Separators Regulating Ion Transport Enabled by Metal-Organic Frameworks for Dendrite-Free Lithium Metal Anodes

Journal

ADVANCED FUNCTIONAL MATERIALS
Volume 31, Issue 33, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.202102938

Keywords

functional separators; lithium dendrites; lithium metal anodes; metal-organic frameworks; nanochannels

Funding

  1. Beijing Nova Program [Z201100006820112]
  2. Natural Science Foundation of Beijing Municipality [2212001, L182008]
  3. National Natural Science Foundation of China [62075002]

Ask authors/readers for more resources

Regulating anion migration near lithium metal and promoting homogeneous lithium deposition are effective strategies to address the dendrites issue in lithium metal batteries. Developing a functional separator to manage ion transport can achieve a highly stable Li plating/stripping cycling and improve the discharge capacity and rate performance of LMBs.
Developing high energy density lithium secondary batteries is pivotal for satisfying the increasing demand in advanced energy storage systems. Lithium metal batteries (LMBs) have attracted growing attention due to their high theoretical capacity, but the lithium dendrites issue severely fetter their real-world applications. It is found that reducing anion migration near lithium metal prolongs the nucleation time of dendrites, meanwhile, promoting homogeneous lithium deposition suppresses the dendritic growth. Thus, regulating ion transport in LMBs is a feasible and effective strategy for addressing the issues. Based on this, a functional separator is developed to regulate ion transport by utilizing a well-designed metal-organic frameworks (MOFs) coating to functionalize polypropylene (PP) separator. The well-defined intrinsic nanochannels in MOFs and the negatively charged gap channels both restricts the free migration of anions, contributing to a high Li+ transference number of 0.68. Meanwhile, the MOFs coating with uniform porous structure promotes homogeneous lithium deposition. Consequently, a highly-stable Li plating/stripping cycling for over 150 h is achieved. Furthermore, implementation of the separator enables LMBs with high discharge capacity, prominent rate performance and good capacity retention. This work is anticipated to aid developement of dendrite-free LMBs by utilizing advanced separators with ion transport management.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available