4.8 Article

Enzyme-Activated Prodrug-Based Smart Liposomes Specifically Enhance Tumor Hemoperfusion with Efficient Drug Delivery to Pancreatic Cancer Cells and Stellate Cells

Journal

ADVANCED FUNCTIONAL MATERIALS
Volume 31, Issue 46, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.202100605

Keywords

drug delivery; pancreatic cancer; prodrugs; smart liposomes; tumor-specific vascular promotion

Funding

  1. National Natural Science Foundation of China [81872428, 81703010, 81372673, 82072051]
  2. China Postdoctoral Science Foundation [2016M600342]

Ask authors/readers for more resources

The selective delivery of chemotherapeutics and modulators to tumor cells and activated pancreatic stellate cells (aPSCs) using a prodrug-based smart liposome system shows promising efficacy for pancreatic cancer therapy, with increased accumulation in tumors and reduced side effects.
Tumor-specific enhanced delivery of chemotherapeutics and modulators to tumor cells and activated pancreatic stellate cells (aPSCs), respectively, represents safer and more effective therapy for pancreatic cancer. Herein, a membrane type 1-matrix metalloproteinase (MT1-MMP)-cleavable spacer is used to assemble low-density cRGDfK onto thermosensitive liposomes loaded with phosphorylated calcipotriol (PCAL) and doxorubicin (DOX), yielding MR-T-PD. The liposome-linked cRGDfK prodrug on MR-T-PD surface is first activated by MT1-MMP, which is selectively expressed on tumor endothelial cells, to release cRGDfK. The free cRGDfK specifically promotes tumor angiogenesis, leading to 3.4-fold higher accumulation and a wider distribution of MR-T-PD in tumors. Furthermore, MR-T-PD rapidly releases PCAL and DOX into the interstitium under heat treatment. The released DOX enters tumor cells to induce apoptosis, whereas the PCAL prodrug is converted to CAL by alkaline phosphatase on the surface of aPSCs; CAL can then enter aPSCs to induce quiescence and promote the antitumor effect of DOX. Finally, by enhancing the exposure of DOX and CAL to tumor cells and aPSCs, respectively, in a tumor-specific manner, MR-T-PD exerts superior efficacy (a 5.9-fold decrease in tumor weight) without causing additional side effects. Overall, this prodrug-based smart liposome system represents a promising paradigm for pancreatic cancer therapy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available