4.8 Article

Artificial Optoelectronic Synapses Based on TiNxO2-x/MoS2 Heterojunction for Neuromorphic Computing and Visual System

Journal

ADVANCED FUNCTIONAL MATERIALS
Volume 31, Issue 34, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.202101201

Keywords

artificial synapses; heterojunction; neuromorphic computing; optoelectronic device; visual system

Funding

  1. National Natural Science Foundation of China [61805101, 62005095, 61625404, 62022079]
  2. Shandong Provincial Natural Science Foundation of China [ZR2019BF013, ZR2018BF025, ZR2020QF105]
  3. Shandong Province Key Research and Development Program [2019RKB01023]

Ask authors/readers for more resources

An artificial optoelectronic synapse composed of Al/TiNxO2-x/MoS2/ITO (H-OSD) is proposed and experimentally realized, enabling various advanced synaptic functions. The potential applications in neuromorphic computing and visual information processing are highlighted, showcasing the versatility and effectiveness of the proposed optoelectronic synapse.
Being capable of dealing with both electrical signals and light, artificial optoelectronic synapses are of great importance for neuromorphic computing and are receiving a burgeoning amount of interest in visual information processing. In this work, an artificial optoelectronic synapse composed of Al/TiNxO2-x/MoS2/ITO (H-OSD) is proposed and experimentally realized. The H-OSD can enable basic electrical voltage-induced synaptic functions such as the long/short-term plasticity and moreover the synaptic plasticity can be electrically adjusted. In response to the light stimuli, versatile advanced synaptic functions including long/short-term memory, and learning-forgetting-relearning are successfully demonstrated, which could enhance the information processing capability for neuromorphic computing. Most importantly, based on these light-induced salient features, a 4 x 4 synapse array is developed to show the potential application of the proposed H-OSD in constructing artificial visual system. It is shown that the perceiving and memorizing of the light information that are respectively relevant to the visual perception and visual memory functions, can be readily attained through tuning of the light intensity and the number of illuminations. As such, the proposed optoelectronic synapse shows great potentials in both neuromorphic computing and visual information processing and will facilitate the applications such as electronic eyes and light-driven neurorobotics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available