4.8 Article

Flexible Bicolorimetric Polyacrylamide/Chitosan Hydrogels for Smart Real-Time Monitoring and Promotion of Wound Healing

Journal

ADVANCED FUNCTIONAL MATERIALS
Volume 31, Issue 34, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.202102599

Keywords

antibacterial; pH-sensitive chitosan-based hydrogels; polyacrylamide; smart real-time monitoring; wound healing

Funding

  1. National Key R&D Program of China [2018YFE0201500]
  2. National Natural Science Foundation of China [81772317, 51973060, 82072051, 81771964, 51621002]
  3. Shanghai International Cooperation Program [15520721200]
  4. CHUTIAN Scholar Project of Hubei Province

Ask authors/readers for more resources

The study presents multifunctional hydrogels for real-time monitoring of wound healing, which can detect pH level, reduce bacterial infection, and promote wound healing simultaneously. The hybridization of CQDs and pH indicator with the hydrogels allows for high responsiveness and accurate indication of pH variability, enabling real-time evaluation of wound conditions. These hydrogels have potential as a smart and flexible wound dressing platform for theranostic skin regeneration.
Real-time monitoring of wound healing remains a major challenge in clinical tissue regeneration, calling the need for the development of biomaterial-guided on-site monitoring wound healing technology. In this study, multifunctional double colorimetry-integrated polyacrylamide-quaternary ammonium chitosan-carbon quantum dots (CQDs)-phenol red hydrogels are presented, aiming to simultaneously detect the wound pH level, reduce bacterial infection, and promote wound healing. The hybridization of CQDs and pH indicator (phenol red) with the hydrogels enables their high responsiveness, reversibility, and accurate indication of pH variability to reflect the dynamic wound status in the context of both ultraviolet and visible light. Furthermore, these visual images can be collected by smartphones and converted into on-site wound pH signals, allowing for a real-time evaluation of the wound dynamic conditions in a remote approach. Notably, the hydrogels exhibit excellent hemostatic and adhesive properties, maintain sufficient wound moisture, and promote wound healing via their high antibacterial activity (against Staphylococcus Aureus, and Escherichia Coli) and skin repair function. Overall, the resulting hydrogels have high potential as a novel smart and flexible wound dressing platform for theranostic skin regeneration.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available