4.8 Review

A Review of Design and Fabrication Methods for Nanoparticle Network Hydrogels for Biomedical, Environmental, and Industrial Applications

Journal

ADVANCED FUNCTIONAL MATERIALS
Volume 31, Issue 33, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.202102355

Keywords

composite hydrogels; composite materials; electronics; hybrid materials; hydrogels; nanoparticle network hydrogels

Ask authors/readers for more resources

Nanoparticle network hydrogels (NNHs) serve as a key building block for creating new functional materials by leveraging the properties of hydrogels and various nanoparticles. Recent progress in the design and application of NNHs highlights their potential in diverse fields, demonstrating the ability to improve hydrogel performance through structured design.
Nanoparticle network hydrogels (NNHs) in which nanoparticles are used as a key building block to build the gel network have attracted significant interest given their potential to leverage the favorable properties of both hydrogels (e.g., hydrophilicity, tunable pore sizes, mechanics, etc.) and a variety of different nanoparticles (e.g., high surface area, chemical activity, independently tunable porosity, mechanics) to create new functional materials. Herein, recent progress in the design and use of NNHs is comprehensively reviewed, with an emphasis on defining the typical gel morphologies/architectures that can be achieved with NNHs, the typical crosslinking approaches used to fabricate NNHs, the fundamental properties and functional benefits of NNHs, and the reported applications of NNHs in electronics (flexible electronics, sensors), environmental (sorbents, separations), agriculture, self-cleaning-materials, and biomedical (drug delivery, tissue engineering) applications. In particular, the way in which the NNH structure is applied to improve the performance of the hydrogel in each application is emphasized, with the aim to develop a set of principles that can be used to rationally design NNHs for future uses.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available