4.7 Article

Modeling solid solution strengthening in high entropy alloys using machine learning

Journal

ACTA MATERIALIA
Volume 212, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.actamat.2021.116917

Keywords

High entropy alloys; Solid solution strengthening; Machine learning; Alloy design

Funding

  1. National KeyResearch and Development Program of China [2016YFB0700505]
  2. 111 Project [B170003]

Ask authors/readers for more resources

This study developed a relationship characterized by the electronegative difference of elements to represent solid solution strengthening, and proposed a more superior model for predicting the solid solution strength/hardness of high entropy alloys, thereby accelerating the alloy design process.
Solid solution strengthening (SSS) influences the exceptional mechanical properties of single-phase high entropy alloys (HEAs). Thus, given the vast compositional space, identifying the underlying factors that control SSS to accelerate property-oriented design of HEAs is an outstanding challenge. In the present work, we demonstrate a relationship derived in terms of the electronegative difference of elements to characterize SSS for HEAs. We propose a model which shows superior performance in predicting solid solution strength/hardness of HEAs compared to existing physics-based models. We discuss applications of our SSS model to HEA design and predict alloys with potentially high SSS in the four alloy systems AlCoCrFeNi, CoCrFeNiMn, HfNbTaTiZr and MoNbTaWV. Our findings are based on the use of machine learning (ML) methods involving feature construction and feature selection, which we employ to capture salient descriptors. (c) 2021 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available